
Stability and Robustness Analysis Tools for Marine Robot
Localization and Mapping Applications

by

Brendan J. Englot

S.B. Mechanical Engineering
Massachusetts Institute of Technology, 2007

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2009

©2009 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper

and electronic copies of this thesis document in whole or in part in any medium now
known or hereafter created.

Signature of Author:___

Department of Mechanical Engineering
May 8, 2009

Certified by: __

Franz S. Hover
Assistant Professor of Mechanical and Ocean Engineering

Thesis Supervisor

Accepted by:__

David E. Hardt
Graduate Officer, Department of Mechanical Engineering

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Stability and Robustness Analysis Tools for Marine Robot Localization
and Mapping Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Department of Mechanical
Engineering,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

118

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

 3

Stability and Robustness Analysis Tools for Marine Robot
Localization and Mapping Applications

by

Brendan J. Englot

Submitted to the Department of Mechanical Engineering
on May 8, 2009 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Mechanical Engineering

ABSTRACT

The aim of this analysis is to explore the fundamental stability issues of a robotic vehicle
carrying out localization, mapping, and feedback control in a perturbation-filled
environment. Motivated by the application of an ocean vehicle performing an autonomous
ship hull inspection, a planar vehicle model performs localization using point features from
a given map. Cases in which the agent must update the map are also considered. The
stability of the marine robot controller and estimator duo is investigated using a pair of
theorems requiring boundedness and convergence of the transition matrix Euclidean norm.
These theorems yield a stability test for the feedback controller. Perturbations are then
considered using a theorem on the convergence on the perturbed system transition matrix,
yielding a robustness test for the estimator. Together, these tests form a set of tools which
can be used in planning and evaluating the robustness of marine vehicle survey
trajectories, which is demonstrated through experiment. An augmented A* kinodynamic
path-planning algorithm is then implemented to search the control input space for the
globally robustness-optimal survey trajectory.

Thesis Supervisor: Franz Hover
Title: Assistant Professor of Mechanical and Ocean Engineering

 4

Acknowledgements

First and foremost I must thank Franz Hover for being a great mentor and advisor. I am
most appreciative of the many hours you spent participating in technical discussions,
offering creative ideas, reviewing my manuscripts, helping me debug my experiments, and
of course for supporting my research and presenting me with this opportunity. I also thank
John Leonard for being a wise and supportive co-PI, I benefitted greatly from your
contributions to our HAUV brainstorming sessions. As the biggest contributors to my
engineering education, I must thank Harry Asada, Neville Hogan, and David Trumper. I’m
very lucky to have had you as instructors for my essential first courses on systems, control,
estimation, and robotics.

Thanks to Jerome Vaganay of Bluefin Robotics for many hours of collaborative field testing
in Boston Harbor. Thanks also to Andrew Patrikalakis for writing excellent DIDSON
playback and data extraction software on a moment’s notice. To Matt Greytak, thanks for
allowing me to pester you on the topic of motion planning, you saved me many hours in the
library with your insight. Josh Taylor, your quals anecdotes kept me fearful enough of the
exam to keep me studying hard. Charlie Ambler, your enthusiasm and sense of humor has
made 5-422 a great place to work. Hordur Johannsson and Michael Kaess, you have been
great teammates and I look forward to continued collaboration with you. To the new folks,
Lynn, Kyle, and Kyle, you’re off to a great start and I know you are destined for a great
future in research.

To my family, your unconditional love and support has made all of this possible, there isn’t
enough room on this page to fully express my love and appreciation. And finally, to Sherry,
without the promise of seeing your beautiful face at the end of each day I don’t think I ever
could have passed the quals; may this be the first of many times that I acknowledge you.

Research was sponsored by the Office of Naval Research Grant
N00014-06-10043, monitored by Dr. T.F. Swean.

 5

Table of Contents

Chapter 1: Introduction

 1.1 Motivation: Autonomous Ship Hull Inspection ..10

 1.1.1 Hovering Autnomous Underwater Vehicle (HAUV) ..13

 1.2 Relevant Prior Work in Control, Estimation, and Motion Planning14

 1.2.1 Robot Localization ..14

 1.2.2 Simultaneous Localization and Mapping (SLAM)..17

 1.2.3 Integrated Localization, Mapping, and Control...20

 1.2.4 Motion Planning via Graph Search..23

 1.3 Problem Statement: Identifying and Managing Vehicle Robustness.................................26

Chapter 2: Autonomous Underwater Map-Building in Real-Time

 2.1 Extended Kalman Filter...29

 2.1.1 Dynamic Model...29

 2.1.2 Aggregate State Vector..30

 2.1.3 Measurement Model ..31

 2.1.4 The EKF Algorithm ...32

 2.1.5 Data Association Algorithm..33

 2.1.6 Feature Initialization Algorithm ..34

 2.2 Feature Detection Algorithm ..36

 2.3 Experimental Results..39

Chapter 3: Unperturbed Marine Vehicle Stability Analysis

 6

 3.1 Marine Vehicle Model ...45

 3.1.1 Aggregate State Vector..46

 3.1.2 Nominal Trajectory...47

 3.1.3 Feedback Control...49

 3.1.4 Linearized Kalman Filter ...51

 3.1.5 Aggregate Transition Matrix..53

 3.2 Stability of Linear Time-Varying Systems ..54

 3.2.1 Trajectories Designed for Stability Analysis ..55

 3.3 Evaluating the Transition Matrix Norm...58

 3.3.1 Map Refinement ...58

 3.3.2 Map Exploitation..59

 3.3.3 Estimating the Upward Gain Margin..61

 3.4 Simulated Marine Vehicle Time Response ...63

 3.5 A Bounding Tube Stability Test ...68

 3.6 Preparing for Experimentation..72

Chapter 4: Perturbed Marine Vehicle Stability Analysis

 4.1 The Perturbation Matrix ...76

 4.2 A Robustness Performance Metric...78

 4.2.1 Simulated Robustness Predictions ...80

 4.3 Experimental Results..83

 4.4 Application to a Real Ship Hull Inspection Scenario..86

Chapter 5: Robustness-Optimal Motion Planning

 5.1 Augmented A* Algorithm..91

 5.1.1 Kinodynamic Planning in Control Input Space ...92

 7

 5.1.2 Tree Graph..93

 5.1.3 Cost-to-Go Heuristic...95

 5.1.4 Robustness-Augmented Cost Function...96

 5.1.5 A* Algorithm ..97

 5.2 Performance of Robustness-Augmented A* ..99

 5.3 Experimental Results...103

Chapter 6: Conclusion

 6.1 Summary..110

 6.2 Future Work...112

Bibliography..114

 8

List of Figures

Figure 1-1: Hovering Autonomous Underwater Vehicle ..11
Figure 1-2: DIDSON Imagery..12
Figure 1-3: Examples of Simultaneous Localization and Mapping..17
Figure 1-4: A* Graph Example...24

Figure 2-1: Photo of USS Saratoga...28
Figure 2-2: Raw DIDSON Data ...37
Figure 2-3: DIDSON Ship Hull Mosaic Image..39
Figure 2-4: Real-Time Feature Extraction ...41
Figure 2-5: USS Saratoga Data Set 1 ...42
Figure 2-6: USS Saratoga Data Set 2 ...43
Figure 2-7: USS Saratoga Data Set 3 ...44

Figure 3-1: Photographs of Raft Platform..47
Figure 3-2: Four-Point Double Integrator Nominal Trajectory...56
Figure 3-3: Two-Point Experimental Nominal Trajectory...57
Figure 3-4: Map Refinement Transition Matrix Norm...59
Figure 3-5: Map Exploitation Transition Matrix Norm ...60
Figure 3-6: Transition Matrix Norm Exhibiting Instability ...62
Figure 3-7: Map Refinement Time Response with Poor Map Intialization....................................65
Figure 3-8: Map Refinement Time Response with Poor Pose Initialization66
Figure 3-9: Map Exploitation Time Response with Poor Pose Initialization................................67
Figure 3-10: Comparison of LKF and EKF Error Covariance and Time Response68
Figure 3-11: Bounding Tube for Perturbations in x..70
Figure 3-12: Bounding Tube Failure Scenario...71
Figure 3-13: Transition Matrix Norm for Two-Point Experimental Trajectory..........................73

Figure 4-1: Displacement Procedure for Perturbed System Analysis..79
Figure 4-2: Closed-Loop Robustness as a Function of Feature Spacing..81
Figure 4-3: Robustness Performance Ratio ...83
Figure 4-4: Raft Platform Experimental Time Response in the x-y Plane85
Figure 4-5: Raft Platform Experimental Time Response in Yaw ..86
Figure 4-6: Simulated HAUV Hull Survey Robustness Plot ...87

Figure 5-1: Diagram of Discretized Input Space...93
Figure 5-2: Diagram of Path Planning Tree Graph ..94
Figure 5-3: Robustness-Optimal A* Trajectories ...99
Figure 5-4: Measurement Jacobian Sensitivity Over the A* Trajectories101
Figure 5-5: Time Response of LKF-enabled Straight-Line Trajectories Using Regular A*..105
Figure 5-6: Time Response of LKF-enabled Robustness-Augmented A* Trajectories..........106
Figure 5-7: Time Response of EKF-enabled Straight-Line Trajectory Using Regular A*.....107
Figure 5-8: Time Response of EKF-enabled Robustness-Augmented A* Trajectories108

 9

List of Tables

Table 2.1: Parameters Used for Real-Time EKF-SLAM at AUVfest 2008 ..40

Table 3.1: Penalty Matrices Used for Generating Optimal Feedback Control Gains

 for the Four-Point Double Integrator Trajectory..61
Table 3.2: Parameters Used for Analyzing Closed-Loop Time Response Sensitivity

 to Erroneous Initial Conditions...64
Table 3.3: Penalty Matrices Used for Generating Optimal Feedback Control Gains

 Along the Two-Point Experimental Trajectory, and Raft Model Parameters72

Table 4.1: Parameters Used for HAUV Robustness Simulation...89

Table 5.1: Robustness Parameters for the A* Trajectories of Figure 5-3....................................102
Table 5.2: Parameters Used in Robustness-Augmented A* Simulation and Experiment....103

 10

Chapter 1

Introduction

For a robot to possess true autonomy, it must be endowed with several key functionalities.

The robot must be capable of perceiving the world around it and using that perception to

determine its own location. It must be able to interpret, organize, and store the

information it obtains from its perception of the world. It must be able to make decisions

about where to travel and how to travel there. And, as it will be argued in this analysis, the

robot must be capable of tolerating disturbances that displace it from its intended path, it

must understand when these disturbances pose the danger of instability, and it must

remain robust to disturbances by choosing its actions carefully. The application of ship hull

inspection has motivated a close look at the stability of an autonomous marine vehicle

equipped with the first three capabilities mentioned above, with the goal of enabling it with

the fourth.

1.1 Motivation: Autonomous Ship Hull Inspection

It is a goal of the US Navy to automate the procedure of ship hull inspection, a task that is

typically carried out by a team of divers. Hull inspections are performed with the goal of

searching for structural damages, including penetrations, cracks, and corrosion, the goal of

observing and managing the buildup of sea life and biofouling (e.g., removing barnacles and

other marine growth), the goal of performing routine maintenance, which includes the

replacement of zinc anodes, and the most important goal of searching the hull for mines

and security threats. In addition to the nominal challenge of achieving one hundred

 11

percent coverage of a large marine structure and the dangers associated with finding and

removing mines, many of the harbors in which these inspections occur contain murky

water with low visibility, further complicating the hull inspection tasks.

Figure 1-1: A photograph of the MIT-Bluefin Hovering Autonomous Underwater Vehicle (HAUV). Image
provided courtesy of Bluefin Robotics.

 Using an autonomous underwater vehicle (AUV) to perform hull inspections has

been adopted as the preferred approach by the US Navy. To enable an AUV to perform this

set of tasks, a number of sensing challenges must be overcome. Operation of an AUV near a

large steel structure prevents a compass from being used to obtain heading. In addition,

GPS, a reliable positioning sensor for surface, ground, and air vehicles, is not available

underwater. Long baseline acoustic tracking, which uses a set of acoustic beacons mounted

on the seafloor or a marine structure to accurately measure an AUV’s position, won’t work

if the AUV is in close proximity to a ship hull, since the hull becomes an obstacle between

the AUV and the baseline network. A very large baseline network would be needed to

measure the vehicle’s position on any side of the hull. A Doppler Velocimetry Log (DVL) is

another commonly-used sensor for AUV navigation, which projects four acoustic beams

onto a surface and measures range and velocity relative to the surface. In deep water, an

AUV cannot project these beams onto the seafloor, and if it projects these beams onto a

ship hull, it will periodically lose contact with the hull surface if it must navigate the sharp

 12

corners and complex areas necessary to achieve one hundred percent coverage. The DVL is

also prone to drift. Finally, an inertial measurement unit (IMU) is prone to drift, and

operation over a long period of time will yield poor AUV position estimation. Given the

various disadvantages of these sensors commonly used in underwater navigation, vision-

based navigation methods offer a promising alternative (in addition to providing mine

detection capability), and a vehicle has been developed which is capable of blending the

aforementioned sensors with data obtained from vision.

Figure 1-2: Clockwise from upper left: a photograph of a DIDSON, a single DIDSON image from a ship hull
survey featuring cooling pipes and a zinc anode, and a mosaic of DISON images gathered from a complete hull
survey, with the red box denoting the location of the single image). DIDSON photograph courtesy of Sound
Metrics Corporation (http://www.soundmetrics.com/PRODUCTS/PR-3000m/didson_deepunits.html) and
sonar image mosaic courtesy of AcousticView (http://www.acousticview.com).

 13

1.1.1 Hovering Autonomous Underwater Vehicle (HAUV)

The vehicle prototype being developed for autonomous ship hull inspection is the Hovering

Autonomous Underwater Vehicle (HAUV), a holonomic, hovering vehicle capable of

actuation in any of its six degrees of freedom. The vehicle, pictured in Figure 1-1, was

created by MIT and Bluefin Robotics and has successfully demonstrated many of the

capabilities required for autonomous ship hull inspection [1], [2], [3]. To navigate during a

ship hull survey it uses a combination of depth sensing, IMU, and DVL. Its vision, which at

the current time is used only so the vehicle operator can look for mine-shaped features on

the hull, is provided by a Sound Metrics Dual Frequency Identification Sonar (DIDSON).

The DIDSON uses sonar to produce images similar in appearance to a visual image from a

camera, as is depicted in Figure 1-2 [4], [5]. A key difference between the DIDSON and a

camera is that a DIDSON can produce these images in any harbor environment, irrespective

of water clarity. Although the DIDSON’s current function is to allow a remote vehicle

operator to detect mines, it can also be used to enable visual navigation by tracking an

assortment of natural features found on a ship hull.

 Aside from mines, a wide variety of features on a ship hull can be repeatedly

recognized in DIDSON images (zinc anodes, inlets, the rudder, propeller, and shaft, and

sometimes rivets and welds). DIDSON provides a range and bearing measurement

associated with each pixel of each image, allowing the relative range and bearing between a

feature and the HAUV to be measured repeatedly. Range-and-bearing measurement of a

network of hull features, given a prior map of the hull containing these features, permits

vehicle localization to be performed using vision as the only means of sensing. If a prior

map is not available, then the vehicle can build a map of features while simultaneously

using them to localize. In the analysis to follow, an estimation strategy of this type will be

considered. Due to the random disturbances present in an ocean environment, a

navigation process of this nature must be coupled with high-fidelity feedback control. By

considering stability and robustness, this analysis will pursue improved understanding of

the integrated localization, mapping, and dynamic control process.

 14

1.2 Relevant Prior Work in Control, Estimation, and Motion
Planning

Before considering the complexities of a process by which an autonomous vehicle plans its

trajectory, employs feedback control to counteract disturbances, and simultaneously

perceives the surrounding environment and its location within the environment, it is

essential to consider fundamental work done in each of these separate areas. For a more

comprehensive treatment of these topics, Thrun [6] provides a review of localization as

well as simultaneous localization and mapping, and LaValle [7] and Choset [8] provide a

review of motion planning algorithms.

1.2.1 Robot Localization

Localization is the estimation of a robot’s pose (position and orientation). In mobile

robotics research this problem is often interpreted more specifically as the task of

estimating the pose of a robot relative to a given map of the surrounding environment.

Sensors such as GPS and acoustic long baseline trivialize the task of localization, but if the

robot can only use observations of the features in its surrounding environment to localize

(e.g., trying to use sightings of nearby trees to navigate through a forest), then localization

becomes a far richer problem. The localization problem is often divided into two

categories, passive and active localization. Passive localization is purely an estimation

process which exerts no control over the robot’s motion, while active localization describes

a process in which a robot is driven to minimize estimation error. Hereafter, the term

localization will be used to refer only to passive localization for the purpose of discussing

the control and estimation processes separately.

Kalman Filter Localization

The most common form of localization employs a Kalman filter or some variation thereof to

estimate the robot’s position and orientation states and sometimes also its velocity states.

The Kalman filter is a Bayesian minimum variance estimator which is optimal in the sense

 15

that it yields an estimate which minimizes mean square error. It relies on the assumption

that both the evolution of the system state and the measurement of the system state are

random processes, each consisting of a deterministic process based on a linear model

added to an uncorrelated Gaussian random process. The Kalman filter is a recursive

estimator, and thus only the most recent measurement and state estimate are needed to

estimate the current state. The linearized Kalman filter (LKF) and extended Kalman filter

(EKF) may be used when either the state evolution process or the measurement process

includes a nonlinear deterministic model. Each filter employs a linearization of the

nonlinear dynamics to estimate the system state. The estimate is no longer optimal once

the dynamics are linearized, but both filters yield good results in many engineering

applications. The extended Kalman filter and linearized Kalman filter algorithms will be

presented in detail in Chapters 2 and 3, respectively, and a comprehensive derivation,

analysis, and discussion of the Kalman filter may be found in Gelb [9]. The concept of using

a Kalman filter to estimate robot pose was introduced by Smith and Cheeseman in 1986

[10], who recognized the potential for concurrently improving knowledge of the robot pose

and the locations of the features being measured by the robot. These ideas were

implemented by Leonard and Durrant-Whyte, who used the EKF for mobile robot

localization using measurements of the geometric features in the surrounding environment

[11].

Scan-Matching and Map-Matching

There are several other varieties of localization which have become popular in the mobile

robotics community. The concept of localization by scan-matching, or comparing a range

scan with previously obtained scans to estimate a robot’s changing pose, was first

introduced by Lu and Milios in 1994 [12]. The Iterative Closest Point algorithm (ICP),

which was developed by Besl and McKay for matching 3D point clouds [13], was eventually

applied to scan-matching localization tasks [14] and remains a popular algorithm for use in

mobile robot localization and mapping [15], [16]. Another method of localization is map-

matching, which uses occupancy grid maps rather than point clouds for comparison. An

occupancy grid map is a discrete grid of the robot’s environment which stores the

 16

probability of an obstacle being present in each unit of the space. By matching a grid map

of the global environment with a local grid that is instantaneously perceived by the robot,

the robot’s pose relative to the global map can be estimated [17].

Markov Localization

A noteworthy and very broad localization category is Markov localization, classified by

Simmons and Koenig in 1995 [18]. Based on measurements of the surrounding

environment and a given map, a robot propagates its belief, which is a probability density

function representing the probability of being at each location on the map at the present

instant in time. The updated belief resulting from each subsequent measurement is

computed using Bayes’ rule. The name of this localization strategy comes from the

definition of a Markov process; a random process in which each state depends only on the

state which came immediately before. Markov localization is independent of the state

space chosen to represent the robot, and it can tolerate ambiguities in associating each

measured feature with a feature on the map (e.g., if we observe a door in a hallway, we

don’t need to know whether it’s door number one, two, or three). Kalman filter

localization, although developed earlier, is a specialized version of Markov localization

which always assumes a unimodal Gaussian belief distribution and represents the belief

using the mean and covariance only. These restrictions prevent Kalman filter localization

from tolerating feature association ambiguities. For this reason, it is also important that

the robot pose is known when Kalman filter localization is initialized.

Grid and Monte Carlo Localization

Other popular specialized versions of Markov localization are grid localization and Monte

Carlo localization. Grid localization discretizes the robot pose space and lumps belief

probability density into discrete units using a histogram representation of the belief

distribution [19]. Monte Carlo localization selects a random set of poses from the pose

space to analyze (termed particles), and each particle is assigned a weight based on the

probability of the most recent measurement given the pose of the particle [20]. Before the

 17

next measurement is collected a new set of particles of equal weight is generated by

randomly choosing each one (with replacement) from the set of previous particles, with

probability proportional to the weights of the previous particles. This set of resampled

particles comprises the belief distribution from which the pose estimate is obtained. In the

analysis to follow, the Kalman filter is adopted as the localization vehicle of choice, as it can

easily be included in the state space framework of a linear dynamic system implementing

feedback control.

Figure 1-3: Examples of vehicle trajectories and maps constructed using SLAM. At left, feature and pose
estimates generated using a data set from Victoria Park in Sydney, Australia. At right, a map which displays
the error ellipses associated with each feature, indicating the relative confidence in each feature’s estimated
location. Images provided courtesy of Michael Kaess (http://www.cc.gatech.edu/~kaess/iSAM.html).

1.2.2 Simultaneous Localization and Mapping (SLAM)

Starting with the fundamental analysis of Smith and Cheeseman in 1986, the problems of

localization and map-building have often been considered in tandem. For a robot to

 18

possess true autonomy, it is often argued that it should be able to deploy in an unknown

environment, build a map of its surroundings, and accurately understand its location on

that map at all times. A foundational articulation of the SLAM problem using a Kalman

filter was achieved by Smith, Self, and Cheeseman in 1990 when they showed that the

estimates of the features observed by a robot grow increasingly correlated as the robot

explores its environment [21]. This requires a SLAM estimation algorithm to possess a

state vector containing every single one of the features on the map, with computation

scaling as the square of the number of states. Fears of unbounded error growth were put to

rest by Csorba, whose key results demonstrated convergence of the Kalman filter SLAM

algorithm [22], [23]. It was demonstrated that errors in the estimates of features on the

map ultimately converge, in the limit of many observations, to a lower bound determined

by the error in the initial pose of the vehicle. Despite these convergence results, the

quadratic computational complexity imposed by the necessary inversion of the Kalman

filter error covariance matrix has motivated other approaches. By splitting a large map

into submaps, Leonard and Feder improved the limitations of an EKF-SLAM framework

[24]. Estimation algorithms other than the Kalman filter have also been used to improve

the efficiency and accuracy of SLAM.

Graphical SLAM

A drawback of the EKF-SLAM algorithm is that errors in feature association cannot be

undone, and cases where feature associations are ambiguous can be problematic (e.g., if the

robot is looking at a door but cannot determine which door it’s looking at, the Kalman filter

will fail to converge). One solution to this has been to perform SLAM offline, once all of the

data has been gathered. A graph is formed connecting each pose in the entire pose history

of the robot (the precise pose is still unknown, but knowledge of the measurement

gathered at each pose and the control command implemented between poses is sufficient

to form the graph), and each pose is subsequently connected to each feature sighted at the

time the pose was achieved (any errors in feature association are corrected later). A map

and vehicle trajectory are then estimated over the entire pose history and measurement

history executed by the vehicle. This technique was introduced by Lu and Milios in 1997,

 19

who generated a graph of range scans associated with the robot pose history and found an

optimal map and trajectory solution using maximum likelihood estimation [25].

Information Representation

More recent offline graphical SLAM implementations have used an information

representation. This approach constructs the graph of pose and measurement history

within the information matrix, which stores the connections between each pose in the

entire pose history and each feature on the map [26]. This matrix is equivalent to the

inverse of the estimation error covariance matrix, and so it must be inverted back in order

to obtain estimates of the robot trajectory. A unique feature of the information matrix is

that it can be sparsified by condensing feature information into the information connecting

poses, and so the computation required to invert this sparse matrix and recover the pose

history is only linear in the number of unknown poses. In addition, recovering estimates of

each feature observed by the vehicle is linear in the number of poses from which the

feature was sighted. Online filters using the information representation have been

developed to achieve a middle ground between the EKF, which resolves measurements into

a probability distribution at every measurement step, and the graphical approach, which is

resolved after all data is acquired. The sparse extended information filter is one example of

such a filter [27]. Only the current pose is maintained in the information matrix, past robot

poses are removed and links to the features observed from those poses are transferred to

neighboring features. The entire information matrix is not inverted at each measurement

step; only a part of the matrix is used to produce a vehicle pose estimate and updated

estimates of a few active features which are in close proximity to the vehicle. This results

in efficient computation which is independent of the size of the state space.

Particle Filters

Finally, another noteworthy approach to SLAM is the use of particle filters. The most

ubiquitous particle filter SLAM algorithm is FastSLAM, described by Montemerlo in 2002

[28]. FastSLAM can accommodate robots with nonlinear governing equations and pose

 20

belief distributions can be multimodal, accounting for different belief outcomes due to

differing feature association outcomes. The algorithm maintains a set of particles, where

each particle consists of a pose belief distribution and an individual Gaussian distribution

for each feature on the map. Given a new control command and measurement, a new pose

is sampled for each particle from the updated conditional belief distribution and each

feature estimate is updated using an EKF. Each particle is assigned an importance weight

based on the probability of the most recent measurement given this sampled pose and the

previous history of measurements. Then, the step of resampling occurs, in which a new set

of particles is drawn (with replacement) from the current set. The probability of choosing

each particle is set proportional to the importance weight. This means that particles with

high importance weights are likely to be picked more than once when resampling occurs.

This resampled belief distribution is used to generate the next pose estimate. Particle filter

SLAM is the most adept at handling feature association ambiguities, it can run online, and

computation scales logarithmically with the number of states. It relies on the fundamental

principle that the belief distribution for the entire particle (i.e., the pose and the feature

locations) can be factored into distributions representing the pose and each individual

feature.

 Despite the computational advantages of the information theoretic and particle

filtering methods, the appealing simplicity of applying linear system stability theory to a

SLAM problem has led to the Kalman filter formulation as our choice for the analysis to

follow. A Kalman filter can easily be included in the state space framework of a linear

dynamic system implementing feedback control, as it can be represented using a single

observer gain which acts on the entire system state vector.

1.2.3 Integrated Localization, Mapping, and Control

Merging a SLAM estimator with a control law is a natural extension to the body of research

discussed thus far, and it is required to close the loop on an autonomous vehicle. In the

robotics community, the integration of SLAM and control has mainly been addressed with

the question, “To which location should the vehicle head next?” Some research has

addressed this question by controlling a robot to achieve optimal coverage of its

 21

environment. A variety of algorithms have been developed which achieve complete

coverage of an area while minimizing the path length or travel time required to do so [29].

Others have devised control strategies which reduce estimation uncertainty, which is

commonly referred to as maximizing the information gain. Information is gained when a

robot state’s estimation error variance is reduced (i.e., a belief distribution becomes less

uniform and closer to being concentrated at a single point). A greedy method of integrated

SLAM and control to optimize information gain, which looks only one step ahead into the

future, was implemented experimentally in 1999 by Leonard and Feder [30], and a multi-

step look ahead method was explored by Huang in 2005 [31]. Other research has sought to

achieve a compromise between coverage and information gain, and the search for the

optimal balance between the two is a widely pursued subject in robotics research today

[32], [33], [34].

 Although answering the question of “where to head next” is essential to achieving

true autonomy in a robotic vehicle, there is another aspect of the control problem which

demands attention, and it is control in the context of using feedback to stabilize,

manipulate, and reject disturbances in a dynamic system. Although many of the seminal

experiments in localization and mapping have been performed using wheeled robot

platforms, wheeled robots are not as susceptible as aerial robots or marine robots are to

being knocked off course by random disturbances. In particular, because marine robots are

subject to ocean waves, currents, and wakes from nearby marine vessels, a closer look at

the stability margins of an integrated localization, mapping, and control process is

warranted.

Stability Analyses

Despite the widespread use of SLAM, a limited body of work exists on the stability of the

integrated localization, mapping, and dynamic control process. Stability of the linear

Kalman filter in the specialized case of a one degree-of-freedom monobot was assessed by

Vidal-Calleja, Andrade-Cetto, and Sanfeliu [35], and its observability by Andrade-Cetto &

Sanfeliu [36], leading to the conclusion that the partial observability of the filter yields

marginally stable estimation error dynamics. Hover analyzed the stability margins of a

 22

localization estimator with closed-loop control for one degree-of-freedom and planar three

degree-of-freedom vehicles with double integrator plants [37]. This analysis considered

the regulation problem, using a constant-gain controller and estimator only. In the present

work, the focus will be extended to a planar vehicle with time-varying controller and

estimator gains, allowing travel anywhere in the 2-D plane.

Visual Servoing

Although the localization and mapping community hasn’t thoroughly explored the dynamic

stability of an autonomous vehicle that navigates using relative measurements of features

in its environment, stability has been more rigorously investigated in the related

community of visual servoing. Visual servoing is the task of using vision (often a single

monocular camera) and feedback control to servo a robot manipulator to a desired

configuration with high precision. It is frequently the case that the camera is in-hand,

mounted on or close to the robot’s end effector. Solutions to the visual servoing problem

are typically divided into two categories, position based and image based visual servoing

[38]. Both processes use image data to extract relative bearing measurements between the

manipulator and features in the image. Position based visual servoing computes an

estimate of the robot’s pose in 3D task space, and the error signal acted on by the controller

is in 3D space as well. A localization strategy similar to those discussed in Section 1.2.1 can

be implemented to solve this problem. Image based visual servoing computes the error

signal in the 2-D image, and this error in image space is mapped to robot actuator

commands. Although there is less emphasis on probabilistic estimation in the field of

visual servoing, stability and robustness of the closed-loop manipulator is a commonly-

visited topic [39], [40]. In particular, an analysis of visual servoing stability and robustness

using Lyapunov stability theory performed by Deng in 2002 serves as a good example of an

examination from which a mobile robot performing localization, mapping, and feedback

control would benefit [41].

 23

1.2.4 Motion Planning via Graph Search

Localization and mapping aside, the pure task of motion planning, or planning the

trajectory a robot will execute as it navigates through its environment, is a rich topic which

has been studied extensively. Assuming a robot is perfectly capable of localizing and

perceiving its environment, the question of how to maneuver from point A to point B can

be answered in many ways. Most motion planning algorithms attempt to discretize and

reduce in quantity the actions and states which can be used to describe the motion of a

robot. If we were to allow the space of states and actions which could be occupied and

executed by the robot to be continuous, then searching through all of the possible

combinations of actions that will propagate the robot through its state space often proves a

very difficult problem to solve for the optimal path. A common simplification is to

represent the robot’s state space using a graph, an assembly of straight-lined edges

connected by nodes.

Dijkstra’s Algorithm

Graphs are used to describe a wide variety of spatial networks, from roadways to electric

circuits. The problem of using a graph representation to determine the shortest path from

one location to another has long been of interest, and one of the most famous and widely-

used graph search algorithms was described by E. W. Dijkstra in 1959 [42]. Dijkstra’s

algorithm requires each edge of the graph to have an associated cost describing the

difficulty of travel between its two connecting nodes. On a system of roads, this cost might

be proportional to the length of the road connecting two cities, or the time required to

travel that road. Every path of edges one could travel along the graph has an associated

cost-to-come, the sum of costs incurred by traveling the path. The goal of the algorithm is

to find the path from a given start node to a given goal node which incurs the minimum

cost-to-come. From the start node, all adjacent nodes (nodes separated from the start node

by a single edge only) are placed in a queue, and they are ranked by their cost-to-come (the

cost of traveling to these nodes from the start node). The node with the lowest cost-to-

come is chosen first, and all of its adjacent nodes are consequently evaluated. The paths

 24

leading to these new nodes from the start node and the respective total costs required to

reach them are added to the queue. The node from which we performed this evaluation is

now “popped”, and we may no longer evaluate adjacent nodes from the location of this

“dead” node for the rest of the algorithm. Next, the path on the queue with the lowest cost-

to-come is selected, and the algorithm repeats. We visit the node associated with the

lowest cost and begin adding its adjacent nodes to the queue. This occurs until a path is

found that reaches the goal. When the first goal-reaching path is achieved, all non-goal-

reaching paths with higher costs-to-come are subsequently eliminated from the queue.

This step occurs again for each goal-reaching path found afterward, until it is finally the

case that all remaining paths on the queue have a higher cost-to-come than the most recent

goal-reaching path. Then, all goal-reaching paths are evaluated and the one with the lowest

cost-to-come is selected as the optimal path.

Figure 1-4: A graph which demonstrates the A* algorithm. Each edge is labeled with its associated cost of travel,
and each and node is labeled with its heuristically formulated cost of reaching the goal from that node. From the
perspective of any single node, the cost-to-come would consist of the sum of numbers along the edges used to travel
to the node from the start position, and the cost-to-go would consist of the number written inside the node. Image
provided courtesy of Howie Choset (http://www.cs.cmu.edu/~biorobotics/book).

 25

A* Algorithm

By considering another type of cost that penalizes being at a node far from the goal (rather

than just assigning penalty for being far from the start node), Dijkstra’s algorithm has been

augmented to converge to the optimal solution in a more efficient manner. The A*

algorithm, introduced by Hart, Nillsson, and Raphael in 1968, evaluates paths along a graph

by adding Dijkstra’s cost-to-come to an additional cost which estimates the remaining

effort required to travel to the goal from the node under consideration [43]. The use of this

additional cost-to-go has been proven to find the optimal path if it is formulated using an

admissible heuristic, or a procedure which always underestimates the true cost required to

reach the goal from the node under consideration [44].

Kinodynamic Planning

Although many planning algorithms apply A* to graphs which represent grids in

discretized 2D space, this approach neglects the dynamics of the agent that will carry out

the path. This is suitable for robots which move slowly and are easily actuated, but many

robots cannot be moved from one location in the state space to another without careful

consideration of the relationship between commanded control inputs and robot motion.

The problem of motion planning while obeying dynamic constraints on velocity and

acceleration is known as kinodynamic planning. One of the earliest implementations of

kinodynamic planning, achieved by Canny et al in 1988, considered a point-mass robot

capable of a few discrete actions at any point in time; it could choose to apply a positive or

negative acceleration of fixed magnitude for a fixed period of time along any of the three

coordinate axes. A dynamic model of the point-mass was used to compute the state space

configurations which would result from the discrete control actions, and a graph search

algorithm was used to find the optimal combination of control actions for reaching the goal

[45]. Choosing discrete control actions for more complex robotic systems can be

challenging, and the concept of maneuver-based motion planning has addressed this [46].

For a robot with more degrees of freedom than a point-mass, carefully choosing a subset of

maneuvers to use for planning can simplify the challenge of searching through a robot’s

 26

state space for the optimal trajectory.

1.3 Problem Statement: Identifying and Managing Vehicle
Robustness

As briefly mentioned before, the objective of this analysis is to take a close look at the

stability of an autonomous marine vehicle carrying out a fully dynamic localization,

mapping, and control process. This will ultimately reveal how to plan trajectories that

ensure robustness against random disturbances, and will also inform estimator and

controller design. The motivation behind this analysis is autonomous ship hull inspection,

and so all vehicle models considered are intended to represent the HAUV, although these

models can be applied to any holonomic marine vehicle. Although the models will be

simplified to some extent, they are intended to capture the essential aspects of the feature-

based navigation and control problem. The measurement process produces range-and-

bearing measurements of hull features and is a nonlinear function of the system states.

Random noise influences both the measurement process and the dynamic control process.

 Different aspects of the localization and mapping problem will be considered in the

sections to follow. In Chapter 2, the basic map-building capability of the HAUV is explored,

and a map is constructed with no prior knowledge of the number or configuration of

features. In Chapters 3 and 4, feedback control is tied directly into the feature-based

estimation loop, and a slightly more restrictive definition of mapping is used to enable a

stability analysis. It is important to note that “mapping” is considered in the context of use

and refinement of a map that is given a priori, and not the building of an entirely new map.

Refinement of the map entails updating or correcting the features already present on the

map, but does not include the addition of new features. Also considered is the case of map

exploitation, in which the a priori map of known features is used for the sole purpose of

localization, and is not updated or corrected. Chapter 3 will demonstrate that integrated

map refinement and control can achieve uniform stability in the sense of Lyapunov using a

theorem on the transition matrix Euclidean norm. A complementary theorem will be used

to show that integrated map refinement and control can achieve uniform asymptotic

stability. Chapter 4 considers the effect of perturbations on stability and introduces a

 27

robustness performance metric. This metric can be used to evaluate the conditioning of the

estimator, and in particular to evaluate the variation in robustness that results from a

variation in the geometric pattern of features on the map. Experimental results which

validate these predictions of geometry-dependent robustness will be presented. Chapter 5

discusses how this metric can be used in guiding the choice of vehicle survey trajectories,

the first robustness-optimal form of robot motion planning. A modification is made to the

A* algorithm to achieve this, and the robustness predictions are supported by experiment.

 28

Chapter 2

Autonomous Underwater Map-Building in

Real-Time

Before integrating the observation of features into a marine vehicle’s feedback control

process, the capability to detect features on a ship hull and use them to construct a map in

real-time is demonstrated. At AUVfest 2008, an event organized for collective experiments

and demonstrations of Navy-sponsored AUV technology, the goal of real-time autonomous

map building was set for the MIT-Bluefin HAUV. The task was performed on the hull of the

Figure 2-1: A photograph of the USS Saratoga, which is currently retired and stationed at the Naval Undersea
Warfare Center in Newport, Rhode Island. The rectangular box indicates the portion of the hull that was
surveyed during the AUVfest 2008 real-time underwater mapping exercise. Photograph provided courtesy of
DefenseImagery.mil (http://www.dodmedia.osd.mil/Assets/Still/1992/Navy/DN-ST-92-09908.JPEG).

 29

USS Saratoga, a retired naval aircraft carrier. The HAUV performed hull relative surveys

along a portion of the hull very similar in curvature and orientation to a flat vertical wall.

The approximate region of the hull surveyed is indicated in Figure 2-1. The HAUV used its

IMU, DVL, and depth sensor to localize along with layered proportional-integral-derivative

(PID) control to correct perceived errors as it carried out the hull survey. While these

standard hull survey processes were performed using the vehicle’s internal computer, the

feature extraction and map-building processes were carried out on a topside computer.

The computer intercepted real-time image data from the DIDSON, odometry data from the

DVL, and used these to produce real-time localization and map estimates. Two algorithms

were run in series to produce these estimates, a feature extraction algorithm which

identified the vehicle-relative range and bearing of mine-shaped training targets observed

in DIDSON imagery, and an Extended Kalman Filter algorithm which recursively estimated

the vehicle pose and velocity, and the location of each target on the hull.

2.1 Extended Kalman Filter

2.1.1 Dynamic Model

An EKF is employed to estimate the pose and velocity of the HAUV and to construct the

map of hull features. Although the HAUV is a six degree-of-freedom vehicle subjected to

hydrodynamic drag, a number of approximations are made to keep the vehicle model as

simple as possible. First, a planar three degree-of-freedom vehicle model is used since the

HAUV is surveying an approximately vertical wall at fixed range, fixed heading, and zero

pitch. As a result, only the roll angle and x-y position are necessary to locate the vehicle and

determine its orientation relative to the hull. In addition, the hull survey run on the

Saratoga consists of horizontal and vertical straight-line trajectories only, with no planned

variation in roll angle. For this reason, the vehicle’s orientation in roll will be decoupled

from its dynamics in x and y. In other words, it will always be assumed that propulsion in

the sway direction corresponds to x-directed motion along the hull, and it will always be

assumed that propulsion in the heave direction corresponds to y-directed motion along the

hull. In reality the vehicle will be perturbed in range, heading, pitch, and roll, but because

 30

the HAUV layered control acts to correct any errors in these degrees of freedom, they are

assumed to be of constant magnitude as described above (although we will still estimate

the roll angle for the purposes of monitoring angular perturbations). One final

simplification is the approximation that the vehicle dynamics consists of double integrators

in each of its three planar, uncoupled degrees of freedom (i.e., hydrodynamic drag is

neglected). Since this model will not be used to compute a control action for the vehicle

and is being used for estimation only, this assumption will not hinder performance of the

algorithm. Given these assumptions, the HAUV dynamic equations, which use an Euler

discretization, appear as follows:



















































































































3

2

1

33

33

3333

3333

1

1

1

1

1

1

0

0

w
w
wI

y
x

v
u

ITI

I

y
x

v
u

x

x

k

k

k

k

k

k

xx

xx

k

k

k

k

k

k







 

 (2.1)

 kkvkv wxFx  |1|
The body-referenced sway velocity, heave velocity, and roll rate are described by u, v, and

, respectively, and x, y, and represent the horizontal, vertical, and angular position of the

vehicle relative to the ship hull. Process noise wi, which is zero mean Gaussian white noise

with diagonal covariance matrix Q, is applied in each degree of freedom. The notation xv

refers to a column vector which contains all six vehicle states. Although (2.1) does not

explicity include the control commands sent to the vehicle by the HAUV layered control,

this will not hinder the filter’s ability to track the vehicle’s trajectory in response to these

control commands.

2.1.2 Aggregate State Vector

Features observed on the hull are approximated as point features defined by an x-y

position. Because the EKF is used to estimate both the vehicle states and the feature

locations, the feature locations must be included in the state vector. The features are

.

 31

assumed to be permanently fixed to the ship hull and have no dynamics. The aggregate

state vector containing both vehicle and feature states has the following structure:

 [kx nnkv yxyxyxx ...2211|
T] (2.2)

The size of the system transition matrix F must be increased to accommodate these new

states. Because the features are static, two rows and columns of zeros must be added to F

for each new feature, with a single entry of magnitude one along the diagonal to propagate

the constant value of each static feature state. Although the above state vector is depicted

with n features, the number of features in the state vector changes over the course of the

algorithm. The algorithm is initialized with zero features in the state vector, and new

features are added as they are observed by the vehicle. Features are never removed from

the state vector, regardless of the time passed since they were last sighted.

2.1.3 Measurement Model

The vehicle’s measurement process, consisting of the measurement of a feature’s range and

bearing relative to the vehicle, is a nonlinear function of the system states, described by

(2.3).

 22)()(yyxxr iii 

 











xx
yab

i
i

iy
tan (2.3)

 [kz vu mm brbr11
T]

 [  vu mm brbr 
11

T]

The relative range from the vehicle to feature i is given by ri, the relative bearing to feature i

is given by bi, and the complete measurement vector for any sampling instant k is given by

zk. Note that zk also includes the sway velocity, heave velocity, and roll rate, which are

obtained from the DVL. Let m represent the number of features observed by the vehicle at

any given sampling instant (this can vary from zero to infinity). Added to each

measurement is , zero mean Gaussian white sensor noise with diagonal covariance matrix

R. Because the measurement process is a nonlinear function of the system states, it must

 32

be linearized in order to propagate the EKF estimation error covariance matrix. The

measurement Jacobian H containing partial derivatives, and the values of these partial

derivatives, is given by (2.4). The partial derivative of each entry in the measurement

vector of (2.3) is taken with respect to each of the state variables in (2.2) to construct this

matrix. It changes size from sampling instant to sampling instant depending on how many

features are observed. At a minimum, when no features are observed H is a three-by-three

identity matrix, receiving only the odometry measurements from the DVL.

 
















































mmmmmm

mmmmmm

k

ybxbybxb
yrxryrxr

ybxbybxb
yrxryrxr

ybxbybxb
yrxryrxr

H

.00001000

.00000000
..........,..
00.001000
00.000000
00.001000
00.000000
00.0000000100
00.0000000010
00.0000000001

222222

222222

111111

111111

22)()(

)(

yyxx

xx
x
r

ii

ii









x
r

x
r i

i

i








22)()(

)(

yyxx

yy
y
r

ii

ii









y
r

y
r i

i

i








 22)()(
)(

yyxx
yy

x
b

ii

ii








x
b

x
b i

i

i






 (2.4)

 22)()(
)(

yyxx
xx

x
b

ii

ii








y
b

y
b i

i

i








2.1.4 The EKF Algorithm

The various components of this model can now be used to produce an estimate of (2.2)

based on the measurements of (2.3). The first step of the EKF algorithm is initialization.

An initial guess of the vehicle state vector is required, and an initial error covariance matrix

is also required. Because the correlations among the various vehicle states are not yet

known, the initial covariance matrix is chosen to be diagonal, containing a variance for each

 33

state derived from the presumed accuracy of the initial choice for that state. The algorithm

then proceeds as follows:

1) Propagate the error covariance matrix P through the system dynamics

(obtaining the a priori estimation error covariance):

 TT
kkk QFFPP  |1 (2.5)

2) Propagate the state estimate through the system dynamics (obtaining the

a priori state estimate):

 kkk xFx ˆˆ |1  (2.6)

3) Compute the Kalman Filter gain:

 1
|11|1|11|11|11])ˆ()ˆ()[ˆ(

  RxHPxHxHPK kk
T
kkkkkkkk

T
kkkk (2.7)

4) Propagate the error covariance matrix P through the measurement

dynamics:

 kkkkkkk PxHKIP |1|1111)]ˆ([  (2.8)

5) Obtain a new measurement, and propagate the state estimate through the

measurement dynamics (obtaining the a posteriori state estimate):

)]ˆ([ˆˆ |111|11 kkkkkkk xhzKxx  
 (2.9)

As the notation used in the algorithm indicates, the measurement Jacobian Hk is obtained

by linearizing the measurement process about the a priori state estimate. Hk and zk will

vary in size throughout the algorithm depending on how many features are observed at

each measurement step. The nonlinear measurement process from which Hk is derived is

denoted by . Although the above equations comprise the nominal EKF algorithm, a few

special additions are necessary to accommodate the need to associate a feature observation

with a specific feature on the map, and the need to introduce a new state into the state

vector and covariance matrix at any point when a feature is observed for the first time.

2.1.5 Data Association Algorithm

When a feature is observed by the vehicle, it is important to understand whether this

feature is new or already present on the map. If it’s already present on the map, then the

)ˆ(xh

 34

specific feature in the state vector that the measurement corresponds to must be identified.

This evaluation is performed using a three-step process. First, a heuristic estimate of the

observed feature’s x-y position is computed using the measurement and the most recent a

posteriori state estimate. This procedure is described by (2.10):

)ˆcos(ˆ  iii brxx

)ˆsin(ˆ  iii bryy (2.10)

After this estimate is computed, a weighted Euclidean distance is computed between the

measured feature and each feature currently on the map. This weighted distance is given

by (2.11):

22)]ˆ([)]ˆ([jiyjixassocation yyWxxWr  (2.11)

The final step is to identify the map feature which yields the smallest weighted Euclidean

distance, and this is the map feature most closely associated with the measured feature. If

the minimum weighted Euclidean distance is less than a chosen threshold, it is concluded

that the new measurement is an observation of the feature with the winning association. If

the minimum distance is larger than the threshold, then the measurement is declared to be

the measurement of a new feature, and this feature is initialized into the state vector and

error covariance matrix.

2.1.6 Feature Initialization Algorithm

A special procedure must be used to introduce a newly sighted feature into the error

covariance matrix. First, the a priori error covariance matrix Pk+1|k is extended in size to

include two new rows and two new columns for the new feature that was just observed.

This preparatory matrix will be denoted P*k+1|k, which is given by (2.12). The notation used

















 





R
PP
PP

P ff
kk

Tvf
kk

vf
kk

vv
kk

kk

00
0
0

|1|1

|1|1
*

|1 (2.12)

in (2.12) indicates that prior to the addition of new rows and columns, the upper left corner

of Pk+1|k contains the covariance matrix for the vehicle states, the lower right corner

 35

contains the covariance matrix for the feature position states, and the upper right and

lower left corners contain the correlations between the feature states and the vehicle

states. This notation is consistent with the aggregate state vector defined in (2.2). The

bottom right corner where the newly added rows and columns intersect contains the

sensor noise covariance matrix R, which stores the noise distribution information for the

range and bearing measurement processes. Another two rows and columns and another R

matrix would need to be inserted into P*k+1|k for each additional feature being initialized.

This preparatory covariance matrix is then propagated through the heuristic feature

position estimation equations defined in (2.10). Since (2.10) is a nonlinear function of

vehicle state estimates and feature measurements, a Jacobian must be assembled, which

appears as follows:

),ˆ(zxg [mm yxyx ...11
T] (2.13)











































































































































































































m

m

m

mmm

n

m

n

mmmmmmmmm

m

m

m

mmm

n

m

n

mmmmmmmmm

mmnn

mmnn

b
y

r
y

b
y

r
y

y
y

x
y

y
y

x
yy

y
y

x
yy

v
y

u
y

b
x

r
x

b
x

r
x

y
x

x
x

y
x

x
xx

y
x

x
xx

v
x

u
x

b
y

r
y

b
y

r
y

y
y

x
y

y
y

x
yy

y
y

x
yy

v
y

u
y

b
x

r
x

b
x

r
x

y
x

x
x

y
x

x
xx

y
x

x
xx

v
x

u
x

g

.
ˆˆ

.
ˆˆˆˆˆˆˆˆ

.
ˆˆ

.
ˆˆˆˆˆˆˆˆ

................

.
ˆˆ

.
ˆˆˆˆˆˆˆˆ

.
ˆˆ

.
ˆˆˆˆˆˆˆˆ

1111

1111

11

1

1

1

111

1

1

1

1111111

11

1

1

1

111

1

1

1

1111111

















Note that the entries of g are given by xi and yi as defined in (2.10), and they correspond to

the new features observed in the most recent measurement step. The Jacobian of (2.13)

contains the partial derivatives of every entry in the vector g with respect to the estimate of

every state in the aggregate state vector (2.2) (including features already on the map). The

number of features on the map prior to this initialization step is denoted by n, and the

number of features being initialized is denoted by m. As it turns out, many of the entries of

this initialization Jacobian are zero, since (2.10) is not a function of any of the vehicle

velocity states or current feature states. Below is the initialization Jacobian with the values

of all partial derivatives included:

 36































)ˆcos()ˆsin(.0000.00)ˆcos(10000
)ˆsin()ˆcos(.0000.00)ˆsin(01000

................
00.)ˆcos()ˆsin(00.00)ˆcos(10000
00.)ˆsin()ˆcos(00.00)ˆsin(01000

11111

11111







mmmmm

mmmmm

brbbr
brbbr

brbbr
brbbr

g

 (2.14)

Once the initialization Jacobian is obtained, the a priori covariance matrix is updated to

include the newly observed features:

 T
kkkkkk gPgP 1

*
|11|1   (2.15)

A discrete time index is now assigned to g to emphasize that it varies in time from

measurement step to measurement step (and when no new features are sighted, g is null).

The newly initialized error covariance matrix yielded by (2.15) can now be used to

compute the Kalman filter gain that operates on the newest measurement (this

measurement vector contains the newly sighted features). This feature initialization

procedure and also a special procedure for delayed feature initialization (useful when the

feature extraction algorithm returns occasional false alarms) are described in detail by

Williams and Durrant-Whyte [47].

2.2 Feature Detection Algorithm

Although the EKF can achieve simultaneous localization and mapping given range-and-

bearing measurements of hull features, extracting these measurements from a DIDSON

frame requires an image processing algorithm. Each DIDSON frame contains an image

matrix, and each entry of the matrix, which consists of an intensity value, corresponds to a

vehicle-relative range and bearing identified by the row and column of the entry. If a color

spectrum is assigned to the intensity values in the image matrix, the image will appear

similar to the example in Figure 2-2, which contains one of the mine-shaped training

targets used on the USS Saratoga.

 The goal of the algorithm is to identify these mine-shaped training targets and

approximate their location by designating a single entry of the image matrix to represent

each target. The range and bearing values associated with this entry are approximated as

the vehicle-relative range and bearing of the training target. To identify the targets,

 37

knowledge of their intensity signature in DIDSON imagery is used, specifically the high

intensity returned by the target itself and the low intensity returned by the target’s

“shadow”. The shadow represents a region from which no acoustic beams were returned,

which is due to the obstruction created by the target. The significant contrast between the

shadow and the surrounding image data, especially the contrast between the shadow and

the target itself, can be exploited to produce an algorithm which runs fast enough to allow

mapping to be executed in real-time.

Figure 2-2: Raw DIDSON data from the USS Saratoga plotted in MATLAB, with a range of yellow and red
colors associated with the intensity values of the image matrix. The vehicle-relative range and bearing
corresponding to each matrix entry is indicated on the axes. The location of the mine-shaped training target
is marked with a blue asterisk. Accompanying the DIDSON data is a photograph of a target planted on the hull
of the Saratoga.

 38

 First, a rectangular section of the image matrix is selected for review. The algorithm

begins by choosing a section in the upper left corner of the image matrix (with the matrix

orientation identical to that displayed in Figure 2-2). The section is sized with the intent of

surrounding a training target shadow with some room left around the edges. A smaller

rectangular section is selected from the center of the large section and set aside separately

(selected with the intention of falling completely within the shadow). The entries that

comprise the small section are replaced with zeros inside the large section, and all of the

non-zero values are stored (hopefully these values correspond to the border around the

shadow). The mean intensity value of the small section is subtracted from the mean

intensity value of the border values from the large section, and this difference is stored,

along with the location of the image section that was just evaluated. What this algorithm

obtains is a mean contrast in intensity between a small rectangular section of the image

matrix and the ring that immediately surrounds it. This process is repeated iteratively, and

the next large section is chosen slightly to the right of the first. Once the right edge of the

image matrix is reached, the algorithm moves back to the left side, and shifts slightly

beneath the location of the section that was evaluated first. Eventually the entire image is

covered, and the vertical and horizontal step size between matrix sections evaluated can be

varied to tune the speed and accuracy of the algorithm.

 Once an entire image matrix has been evaluated, all intensity difference values

gathered from the matrix are normalized by the root mean square of this set of values. This

way, a similar intensity threshold can be used for images of different mean intensity. This

is important since the mean intensity of an image is likely to vary as the robot is perturbed.

Small perturbations can influence the projection of DIDSON beams onto the hull and alter

the mean intensity of the image. After some experimental tuning, an intensity threshold is

set for the normalized intensity difference values, and in any image where an intensity

difference value exceeds the threshold, the maximum value within the image is declared to

correspond to the location of a training target. The rectangular section of the image matrix

which produced the winning value is revisited, and the matrix entry corresponding to the

front and center of this matrix section, likely to be the front of the shadow where the actual

target is located, is chosen to correspond to the range and bearing of the target.

 39

 This algorithm must be tuned according to the orientation of the DIDSON relative to

the hull. If the DIDSON is pitched so that it views the portion of the hull beneath the

vehicle, the rectangular shadows will be located beneath the targets. If the DIDSON is

pitched so that it views the portion of the hull above the vehicle, the rectangular shadows

will be located above the targets. For the experiments performed at AUVfest, the latter

situation was the case, and the bottom center entry of the winning image matrix was

selected as the location of the training target. The feature extraction algorithm is the major

computational burden of the HAUV mapping algorithm, but is nonetheless capable of

allowing real-time localization and mapping to run at about 3 Hz.

Figure 2-3: A mosaic of DIDSON frames displaying the set of mine-shaped training targets planted on the USS
Saratoga for the AUVfest2008 real-time mapping exercise. Because the retired vessel resides at NUWC year-
round, a significant amount of marine growth is present on the hull and visible in this image. Because the
bottom row of three targets is almost completely obstructed by marine growth, only the upper six were used
in the mapping exercise. Mosaic image provided courtesy of AcousticView (http://www.acousticview.com).

2.3 Experimental Results

Real-time localization and mapping was performed on three surveys of the Saratoga. Each

survey covered a section of the hull approximately 12m by 2m in size, on the region of the

ship indicated in Figure 2-1. Nine of the mine-shaped training targets were mounted on

this section of the hull; a sonar mosaic displaying the layout of the targets underwater is

given by Figure 2-3. Biofouling on the hull hindered the visibility of three targets, and so

only six were used in the real-time localization and mapping exercise. Because the

horizontal spacing of the targets is larger than their vertical spacing, a weight of two was

 40

chosen for Wy of (2.11) and a weight of one was chosen for Wx. This amplified the vertical

separation of the features to aid the data association process. Other parameters used in the

experiment are listed in table 2-1.

Table 2.1: Parameters Used for Real-Time EKF-SLAM at AUVfest 2008

DIDSON Viewing
Window Parameters:

Min Visible Range:
2m

Max Visible Range:
7m

Min/Max Heading:
 15 degrees

Feature Extraction
and Data Association
Parameters:

Feature Range Threshold for
Data Association: 1.8 m

Normalized DIDSON intensity
difference threshold for feature
detection: 5

Vehicle Process
Noise Parameters:

Process noise
variance, surge:
0.01 (m/s2)2

Process noise
variance, sway:
0.01 (m/s2)2

Process noise
variance, roll:
10-12 (rad/s2)2

Odometry Sensor
Noise Parameters:

Sensor noise
variance, surge
odometry:
10-4 (m/s)2

Sensor noise
variance, sway
odometry:
10-6 (m/s)2

Sensor noise
variance, roll
odometry:
0.04 (rad/s)2

Feature Detection
Noise Parameters:

Sensor noise variance, vehicle-
relative range: 0.1 (m)2

Sensor noise variance, vehicle-
relative bearing: 0.1 (rad)2

__

 Figure 2-4 demonstrates the performance of the feature extractor during the

AUVfest 2008 experiments. The blue asterisks mark the feature extractor’s predictions of

where the training targets are located, and in these areas it is clear that the index used by

the feature extractor was much higher in the region of the target than in other parts of the

image. The feature extractor was tuned conservatively, which yielded very few false

alarms (i.e., declaring a feature to be a training target when it is not) at the expense of

fewer target sightings. The most frequently-sighted targets were observed thirty to forty

times during one survey, while the least frequently-sighted targets were observed only two

or three times. Although localization was performed concurrently with the mapping

process during the hull surveys, the sparsity of feature sightings required the localization

process to depend heavily on vehicle odometry from the DVL and depth sensor.

Results from the three hull surveys are displayed in Figures 2-5, 2-6, and 2-7. The

EKF-estimated vehicle trajectory is plotted alongside the dead-reckoned trajectory

computed internally by the HAUV, and it can be observed that the two trajectory estimates

are quite similar. The maps constructed by the algorithm are also included in these figures,

with red asterisks marking the estimated feature locations. Ninety-five percent confidence

 41

Figure 2-4: Performance of real-time feature extractor is demonstrated using two example DIDSON frames.
The raw data is presented at left, and the feature extractor detection index for each rectangular quadrant of
the image that was processed is displayed at right. Areas where features were identified (indicated by the
blue asterisk) correspond to high peaks in the feature detection index.

ellipses derived from the error covariance matrix are plotted around each feature on the

map. Features with small ellipses were sighted many times, yielding higher confidence in

the feature estimate. In the cases of features sighted thirty to forty times, the filter’s

confidence in the feature estimate yielded an ellipse of about 0.5m in diameter. Features

 42

Figure 2-5: The first of three data sets produced from surveying the USS Saratoga. One false alarm was
obtained during this survey, corresponding to the feature with the large error ellipse (which was sighted only
once).

with the largest ellipses were sighted only a handful of times, with confidence ellipses as

large as 2m in size. During each of the first two trials, the mapping algorithm picked up a

single false alarm. This was due to the fact that certain marine growth features on the hull

were very similar in shape to the training targets. Because the confidence ellipses

associated with these erroneous features were large in size (about 4m in width), it was

clear from viewing the map that these features should be discarded. The true locations of

the training targets were approximated by associating six points with target locations

pictured in the sonar mosaic of Figure 2-3. The absolute location of these six points was

 43

Figure 2-6: The second of three data sets produced from surveying the USS Saratoga. Similar to data set 1,
one false alarm was obtained during this survey, corresponding to the feature with the large error ellipse
(which was sighted only once).

not known, but their relative locations were, and so these six points were fit to the mapping

algorithm’s final feature position estimates using the 2-D iterative closest point algorithm.

This algorithm produced the rotation and translation that would yield the closest fit

between the feature estimates and the approximate true feature locations. When this fit

was performed, all six features fell within the boundaries of the mapping algorithm’s

ninety-five percent confidence ellipses. The successful completion of this real-time

mapping exercise demonstrated the potential of feature-based navigation to aid in mine

detection and autonomous ship hull inspection.

 44

Figure 2-7: The third of three data sets produced from surveying the USS Saratoga. The width of the survey
was reduced and as a result no false alarms were obtained.

 45

Chapter 3

Unperturbed Marine Vehicle Stability

Analysis

Having demonstrated the ability to identify features and maintain a map in real-time using

imaging sonar data, the focus is now shifted to closing the feedback loop on a process that

uses range and bearing measurements of point features for estimation. A more detailed

planar marine vehicle model is introduced in this section, which interacts with both an

estimator and controller. The model is linearized about a nominal vehicle survey

trajectory, allowing the closed-loop system to be expressed using a linear time-varying

state space framework. A numerical test is formulated that predicts the stability of the

vehicle for a given layout of features and a given nominal trajectory among those features.

This numerical test is a new contribution to the limited set of stability tools for linear time-

varying systems, and permits a quick evaluation of whether the controller selected for a

linear time-varying system is stable. Although vehicle the model is formulated to

accommodate and overcome random disturbances, the stability analysis doesn’t explicitly

include a description of model inaccuracies caused by perturbation from the nominal

trajectory. This will be addressed in chapter 4.

3.1 Marine Vehicle Model

The dynamics of a holonomic marine vehicle operating in a 2-D plane are described in

discrete time by (3.1) with a forward Euler rule:

 46















































































































































3

2

1

33

33

3

2

1

33

33

1

1

1

1

1

1

00
)cossin(
)sincos(

)(
)(
)(

w
w
w

I

J
UT

m
UT

m
UT

I

T
vuTy
vuTx

JbT
mvbTv
mubTu

y
x

v
u

x

x

x

x

kk

kkkkk

kkkkk

kk

kvk

kuk

k

k

k

k

k

k









 



 

 (3.1)

 kkkvkv wuBxfx )(|1|

The body-referenced forward velocity, sway velocity, and yaw rate are described by u, v,

and , respectively, and x, y, and represent the horizontal, vertical, and angular position

of the vehicle in the inertial plane. Hydrodynamic drag b is expressed as a function of

velocity in each degree of freedom, and vehicle mass and rotational inertia are described by

m and J. Surge, sway, and yaw commands are applied to the channels U1, U2, and U3,

respectively, and process noise wi, which is zero mean Gaussian white noise

with

diagonal covariance matrix Q, is also applied to each channel. Throughout the analysis and

experiments to follow, this model specifically describes the holonomic platform pictured in

Figure 3-1, whose time constant of linear motion is approximately two seconds, and whose

time constant of angular motion is approximately one second (although in some

simulations a double-integrator model simplification will be made). This platform,

hereafter referred to as “the raft”, was designed with the intention of creating a scaled-

down mockup of the HAUV, approximating hull-relative navigation by restricting the

vehicle’s motion to three planar degrees of freedom. Range and bearing measurement of

features in the plane is enabled by a Hokuyo-URG laser range finder mounted on top of the

platform. Holonomic actuation is enabled by four bilge pumps mounted on the underside

of the platform. Thrusts produced by these pumps can be combined to generate force and

torque of any desired directionality in the plane. The design and fabrication of the raft by

Michael Kokko are detailed in his Master’s Thesis [48].

3.1.1 Aggregate State Vector

A convenient way to permit KF-based SLAM to reconstruct the vehicle state using the

 .

 47

measurement of point features is the addition of quasi-states representing the horizontal

and vertical positions of the features in the plane, a concept introduced in Chapter 2. As

before, it will be assumed that the quasi-states are permanently fixed in space and have no

dynamics. The aggregate state vector appears as follows:

 [kx nnkv yxyxyxx ...2211|
T] (3.2)

The vehicle states at time k are contained within xv|k. The contents of this state vector

permit the vehicle-relative range and bearing measurements of each feature to be

assembled. Unlike the aggregate state vector introduced in Chapter 2, however, the state

vector xk will remain of constant size for the entire duration of the algorithm. To perform a

stability analysis the features to be measured must be known in advance, and so it will be

assumed that a prior map is available and that all features will be observed at each and

every measurement step. Within these guidelines two separate scenarios will be

considered, map refinement and map exploitation, which were introduced in Chapter 1.

Map refinement will permit the feature estimates to vary and map exploitation holds them

fixed, reducing the estimation problem to one of localization only.

Figure 3-1: The model used in this stability analysis describes a holonomic floating platform with three
degrees of freedom, a scaled down mockup of a ship hull inspection vehicle. The platform is equipped with a
Hokuyo-URG laser range finder and four bilge pumps mounted on the foam pontoons which act as thrusters.

3.1.2 Nominal Trajectory

First a nominal trajectory is generated for the vehicle to send it to a desired waypoint from

its starting position in the plane in a specified amount of time. This is posed initially

 48

independently of any navigation considerations. An open-loop input trajectory delivers a

nominal command at each time step, and a closed-loop control correction is used to

counteract disturbances. The open-loop trajectory is found by solving a finite time optimal

control problem with a quadratic cost function, which is given by (3.3):

 dtuRuxQxTrTxSTrTxtJ T
T

t

TT)(
2
1))()(())()((

2
1)(  (3.3)

In this cost function, T represents the final time, r(T) represents the desired reference state

of the system at the final time T, and S, Q, and R are square, positive semi-definite matrices

(R is the only one which must also be positive definite) that contain the penalties

associated with the system’s final configuration, the system’s state at any time, and the

system’s control input at any time, respectively. The goal of this optimal control problem is

to find the sequence of inputs u that will minimize J given an initial configuration, a desired

reference, and a desired time interval across which the trajectory must be executed.

Employing the maximum principle, the following system of differential equations must be

solved:

 uBxfuxgx )(),(

 xQ
x
f

xQ
x
g TT










  (3.4)

  BuR
u
g

uR
T





0

The function f(x) represents the nonlinear state transition relationships in (3.1). The

vector  contains LaGrange multipliers which are used to enforce the system dynamics in

the cost function (3.3), these are also known as costates. Because the Jacobian of g(x,u)

taken with respect to the inputs u is not itself a function of u (the inputs are related to the

system dynamics through a linear time-invariant input matrix B), the third equation of

(3.4) can be solved for u and substituted into the first equation. This permits (3.4) to be

reduced to a single nonlinear ordinary differential equation (if x and  are placed in the

same state vector). This reduced equation and its boundary conditions are given by (3.5):

 49



































xQ
x
f

BRBxfx T







)()(1




 00)(xtx  (3.5)

))()(()(TrTxST 

Since there are boundary conditions at both the initial and final time, this is by definition a

two-point boundary value problem. In this analysis it is solved using MATLAB’s bvp4c

function, which can solve ordinary differential equations formulated using the structure of

(3.5). Because this function requires the problem to be posed in continuous time,

equations (3.3) to (3.5) have been formulated in continuous time. The formal derivation of

(3.4) from (3.3) can be achieved using variational calculus and is explained in detail by

Bryson [49] and Lewis [50].

3.1.3 Feedback Control

Once the open-loop input trajectory is formulated, a feedback controller is designed to keep

the vehicle on the nominal trajectory. The controller operates linearly on any perceived

error in the vehicle state, and errors will exist if the vehicle is not at the precise position

and velocity dictated by the nominal trajectory for the current instant in time. Combining

the open and closed-loop controls, the system and measurement dynamics is given by:

 kkkkOLkk wxNGuBxfx )ˆ()(1  (3.6)

 111)(  kkk vxhz

The term represents the deviation of the state estimate from the nominal state

trajectory, used as an error signal for the controller. The nonlinear functions f(x) and h(x)

are used to represent, respectively, the state transition relationships in (3.1) and the

nonlinear measurement of range and bearing relative to each of the features. The sensor

noise term vk represents zero mean Gaussian white noise with diagonal covariance matrix

R. Gk is a time-varying matrix of feedback control gains, N is a 6 by 6+2n stripping matrix

needed to extract the vehicle states from the state vector, discarding the 2n quasi-states for

the purposes of control. Because the feature states have no dynamics, the lower 2n rows of

kx̂

 50

f(x) are the identity and the lower 2n rows of B and  are populated with zeros.

 Gk is computed optimally using a quadratic cost function similar in appearance to

(3.3). The only difference is that there is no longer a reference state r to which the system

is being driven, it is assumed instead that the system is being driven to zero (i.e., a

regulator problem). Since the controller acts on the vehicle’s deviation from the nominal

trajectory, , a state of zero corresponds to the vehicle being located on the nominal

trajectory. This also allows the vehicle model of (3.1) to be linearized about the nominal

trajectory and to be approximated as a linear time-varying system. The state transition

Jacobian is used to approximate the system deviation from the nominal trajectory, and is

given by (3.7) (note that the hydrodynamic damping is now assumed to be a linear function

of velocity). Note that the Jacobian is a square 6+2n by 6+2n matrix that operates on the

aggregate state vector (3.2). Because the system dynamics are linearly related to the

system states, computation of the optimal control action is simplified. The time-varying





















































1.0000000
.........
0.1000000
0.010000
0.0))sin()cos((100)cos()sin(
0.0))cos()sin((010)sin()cos(

0.0000100

0.0000010

0.0000001

)(

T
TvuTT
TvuTT

T
J
b

T
m
b

T
m
b

xF
kkkkkk

kkkkkk

v

u

k






 (3.7)

optimal feedback gain matrix can be computed using the discrete matrix Riccati equation.

This equation is solved backwards in time recursively, beginning with the final

configuration of the vehicle along the nominal trajectory. Each step along the nominal

trajectory yields a feedback gain matrix Gk which corresponds to the nominal system

configuration at the particular instant in time k. The feedback gain matrix Gk is derived

from the Riccati equation in the following manner:

 QxFSBRBSBBSSxFS kk
T

k
T

kk
T

kk  


)(])([)(1
1

111

)()(1
1

1 kk
T

k
T

k xFSBRBSBG 


  (3.8)

kx̂

 51

The matrices Q and R are penalty matrices identical to those of (3.3) (not to be confused

with the system noise covariance matrices Q and R). The matrix S of (3.3), used to penalize

the final system configuration, is used as the very first Sk+1 to initialize (3.8). Of course, the

same penalty matrices S, Q, and R do not need to be used for both the open-loop and closed-

loop control. In this analysis, different penalty matrices are used for the two controllers.

All of the matrices used are diagonal, where each entry along the diagonal penalizes growth

of its respective state or input. An iterative tuning process is begun by choosing a

maximum desired value of the state or input, and initially setting the penalty on the state to

the negative second power of the desired maximum value. After observing the system

performance in simulation, the diagonal penalty values of S, Q, and R can be adjusted to

obtain the desired system performance. This systematic method of tuning S, Q, and R, as

well as the derivation of (3.8) from a quadratic cost function, are detailed in a more recent

work by Bryson [51].

3.1.4 Linearized Kalman Filter

The use of a nominal vehicle trajectory permits a linearized Kalman filter to serve as the

estimator for vehicle localization. This strategy allows the vehicle to move to any desired

location in the plane, as long as an approximate layout of features is known in advance. It is

also assumed that feature association can be performed successfully, and that T between

measurements is constant. These assumptions will allow vehicle pose estimation and map

refinement to occur using a precomputed set of gains and Jacobians. The estimation

equation is written in terms of deviation from the nominal trajectory kx :

]ˆ)([ˆˆ |1111|11 kkkkkkkk xxHzKxx   

 (3.9)

 kkkkkk xNBGxxFx ˆˆ)(ˆ |1  

The nonlinear state transition function f(x) and the measurement function h(x) of

(3.6) are now replaced by and , the corresponding Jacobians, which

are linearized about the nominal trajectory at each time step and have been defined

respectively in (2.4) and (3.7). The term represents the deviation of the measurement

from the deterministic measurement along the nominal trajectory. Kk is the time-varying
kz

)(kxF)(kxH

 52

Kalman gain, which is computed in advance along each step of the nominal trajectory. The

LKF estimation algorithm is similar to the EKF algorithm described in Chapter 2, except the

Jacobians used to propagate the error covariance matrix are linearized about the nominal

trajectory instead of being linearized about the most recent a priori estimate. Another

difference from the EKF is that Jacobians also appear in the equations which propagate the

state estimate, as can be seen in (3.9). The final difference is in the quantity that is

estimated, which is the deviation from the nominal trajectory rather than the complete

trajectory. To obtain a complete state estimate, the nominal trajectory can be added to the

deviation estimate produced by (3.9).

 Feature initialization occurs according to a procedure similar to that used in

Chapter 2. Instead of initializing features one at a time, for the case of map refinement the

entire a priori map is initialized at once, producing the initial estimation error covariance

matrix. Feature initialization is begun with a preparatory error covariance matrix similar

to (2.12), which is given by (3.10):











c

v

R
P

P
0

00*
0

This preparatory matrix contains an initial vehicle error covariance matrix, which is a

diagonal matrix whose nonzero entries are variances chosen for each vehicle position and

velocity state derived from the presumed accuracy of the initial guess for that state. Since

no feature covariances have been added yet, Rc is a map confidence covariance matrix, a

diagonal matrix which contains a range and bearing measurement variance that

correspond to the confidence in the location of each feature on the a priori map. If the a

priori map to be used for map refinement is known to be perfect, then sub millimeter and

sub degree confidence can be expressed for every feature on the map; if the a priori map is

likely to contain errors, then larger variances can be used for map initialization. This

preparatory matrix is propagated through the heuristic feature position estimation

equations defined in (2.10), which estimate feature locations using range and bearing

measurements of features and the initial vehicle position. The range and bearing

measurements used here are the deterministic measurements from the very first

measurement step of the nominal trajectory, and the feature initialization Jacobian of

(3.10)

 53

(2.14) is consequently computed and the initial error covariance matrix is obtained as

follows:

TgPgP 0

*
000  (3.11)

Although an EKF is likely to yield better estimation in the presence of perturbations

than an LKF, the EKF’s nonlinearity and dependence on the vehicle’s noise-influenced

trajectory do not allow linear matrix computation or computation in advance of the

vehicle’s deployment. Thus the LKF will serve as the estimator for the remainder of this

analysis at the risk of inaccuracy in the presence of large perturbations and with the benefit

of enabling a more descriptive stability analysis. Despite this decision, the ultimate goal of

this analysis is to develop a design procedure for ship hull survey algorithms which use an

EKF rather than an LKF. It is expected, although not strictly proven, that the system

configuration which yields the most stable and robust LKF-enabled closed-loop vehicle will

also yield the most stable and robust EKF-enabled closed-loop vehicle.

3.1.5 Aggregate Transition Matrix

Thus far the only linearization approximations have been those which are called for

specifically by the linearized Kalman filter. To enable a stability analysis, it will be further

assumed that dynamics of the true physical plant are well approximated by the state

transition Jacobian, and that the true measurement process is also well approximated by

the measurement Jacobian. Simplification of (3.6) and (3.9) yields the following compact

formulation:


































k

k

kk

kkk

k

k

x
x

ExF
NBGNBGxF

x
x

~)(0
)(

~
1

1







)()(11 kkkk xFxHKE  (3.12)

 kkk xxx ˆ~  

The upper half of the state vector contains deviations from the nominal trajectory, rather

than the full states, and the lower half of the state vector contains the estimation error.

Equation (3.12) provides us with an equilibrium point of zero throughout the system’s

operation, and it also captures the complete closed-loop system dynamics and estimation

 54

error dynamics in the structure of a linear time-varying system. This is a structure which

lends itself to Lyapunov stability analysis, as will be demonstrated in the sections to follow.

A comprehensive tutorial on linearized systems of this structure, which combine an open-

loop nominal trajectory with an LKF estimator and a quadratic cost optimal feedback

controller, is presented by Athans [52]. As noted previously, we pursue first a stability

analysis of (3.12) without considering the effects of geometry errors.

3.2 Stability of Linear Time-Varying Systems

A few stability definitions will now be presented. A system equilibrium point is stable in

the sense of Lyapunov, or Lyapunov stable, if for any region of specified size surrounding the

point, it is possible to specify a second region from within which the system may start and

is guaranteed remain within the boundaries of the first region for all time. A system

equilibrium point is asymptotically stable if it is possible to specify a region from within

which the system may start and will always return to the equilibrium point in the limit as

time approaches infinity. Exponential stability is achieved when this asymptotic

convergence may be described by a decaying exponential function of time. An equilibrium

point is globally stable if the region from within which the system may be initialized and

achieve one of the above stability guarantees consists of the entire state space, and an

equilibrium point is uniformly stable if the stability guarantee holds for any choice of initial

time k0. A linear time-varying system can never be asymptotically stable without also being

exponentially stable. A more detailed presentation of these definitions and further

treatment of the topic of stability in the context of dynamic systems and control is

presented by Slotine [53].

Before the stability of (3.12) is assessed, two stability theorems are laid out. These

theorems are defined for use with discrete systems by Willems [54].

Theorem 3.1. The null solution of (3.12) is stable in the sense of Lyapunov if

and only if there exists a bound M, for any k0, such that the following

inequality holds for all k≥k0:

Mkk ),(0

 55

(k,k0) is the transition matrix which propagates the system to time k from

time k0. If M can be taken independently of k0, then the solution is uniformly

stable in the sense of Lyapunov.

Theorem 3.2. The null solution of (3.12) is asymptotically stable if and only

if the conditions of Theorem 3.1 for stability in the sense of Lyapunov are

satisfied, and:

0),(lim 0 


kk
k

The solution is uniformly asymptotically stable if the above is satisfied and

the bound M of Theorem 3.1 can be taken independently of k0.

The norm used in Theorems 3.1 and 3.2 is the Euclidean or spectral norm, equivalent to the

largest singular value of the transition matrix. Using the notation of Theorems 3.1 and 3.2,

the state transition matrix of (3.12) would be expressed as (k+1,k), as it propagates the

closed-loop vehicle system from the state at time k to the subsequent state at k+1 . By

multiplying the successive state transition matrices of (3.12), the transition matrix from

any k0 to any time k along the nominal trajectory can be computed. Because the transition

matrix of (3.12) is linearized about a nominal trajectory, it is clear that a certain distance

from the nominal trajectory the linearization will fail to capture the system dynamics

accurately. For this reason a guarantee as strong as global stability cannot be achieved for

the closed-loop marine vehicle system, and so uniform Lyapunov and asymptotic stability

in the local region of the nominal trajectory will be pursued.

3.2.1 Trajectories Designed for Stability Analysis

Although the framework described in Section 3.1 is designed for a nominal trajectory that

connects two waypoints, this scenario can be augmented for analysis at infinite time

(permitting use of Theorem 3.2). In the analysis to follow, two periodic paths among a

series of waypoints will be considered, one designed for simulation and another simplified

trajectory designed for experiment. The trajectory designed for simulation, and the

 56

Figure 3-2: A periodic vehicle trajectory designed for simulation is depicted, along with the configuration of
landmarks used by the vehicle for estimation. This trajectory is employed in simulations using all nine
features and also a subset of three features. The three-feature subset is indicated by the features marked
with an asterisk. The nominal changes in heading commanded across this trajectory are indicated by the
angle  drawn at each waypoint. Parameters that are used in the vehicle simulation are listed.

corresponding parameters used in simulation, are given in Figure 3-2. This trajectory uses

a marine vehicle model with a double integrator physical plant that assumes unit masses

and inertias. The vehicle begins at the inertial frame origin with an initial heading of 45o

from the inertial x-axis, it proceeds to a second waypoint where its heading is 135o from

the x-axis, followed by two more waypoints where another 45o is added to the heading,

until it reaches the initial configuration where the trajectory began. The vehicle then

proceeds in reverse along the same path until reaching the original waypoint at the origin.

This entire procedure comprises one cycle of the trajectory. The specific path followed

between waypoints is computed using the optimal control strategy described in Section

3.1. The trajectory is designed to allow the vehicle to pass through a wide range of its state

space in which the linearized system Jacobians take on a wide range of values. The features

used by the vehicle for navigation are also depicted in Figure 3-2, and were generated at

random to populate the square-shaped area enclosed by the trajectory. This trajectory will

hereafter be referred to as the four-point double integrator trajectory.

 57

Figure 3-3: The periodic vehicle trajectory used for raft experiments is depicted, along with the configuration
of three landmarks used for raft localization. The nominal changes in heading commanded across this
trajectory are indicated by the body-fixed coordinates u and v and inertial angular coordinate . Parameters
used in both experiment and simulation of this trajectory are listed.

Although the four-point double integrator trajectory should reveal much about the

stability of a localization, mapping, and control process, it must be simplified for

experimental implementation. The raft, a tethered platform with an external power source,

will encounter difficulties maneuvering around the field of features and sighting all

features on the randomly-generated map at once. A simplified path for use in experiment

contains only two of the waypoints from the four-point double integrator trajectory, which

are depicted in Figure 3-3. A periodic path between the two waypoints will be executed by

the raft, with the specific trajectory between waypoints computed once again using optimal

control. One period consists of a forward trip along the path, followed by a trip in reverse

back to the origin. The double integrator assumption is abandoned and linear damping

parameters are now used in the vehicle model to capture the hydrodynamic drag forces.

Inertial parameters indicative of the raft’s true mass and rotational inertial are used in the

model as well. The configuration of three features along a horizontal line was chosen so

that one feature will never block the line of sight to another feature. This is not a problem

for simulation, but for experiment it is necessary that all features can be physically sighted

by the raft’s laser at each measurement step. This trajectory will hereafter be referred to as

 58

the two-point experimental trajectory. This trajectory will be analyzed briefly in the final

section to lay the groundwork for the raft experiments of Chapters 4 and 5.

3.3 Evaluating the Transition Matrix Norm

In this section the transition matrix norm of the holonomic marine vehicle described by

(3.12) will be evaluated along both of the nominal trajectories identified in Section 3.2, for

cases of both map refinement and map exploitation. Theorems 3.1 and 3.2 will be applied

to the transition matrix norm to assess stability.

3.3.1 Map Refinement

The first estimation scenario considered is one in which the vehicle uses point features for

localization and can simultaneously adjust its estimates of the feature locations (i.e., it can

refine the a priori map as it repeatedly observes the features). For the case of the four-

point double integrator trajectory, Figure 3-4 displays the values of the transition matrix

norm for the (k,k0) that transit from every initial time k0 to every final time k along two

cycles of the nominal trajectory, for cases of three and nine features. A prominent attribute

of the 3D surface formed by plotting the transition matrix norm is the periodic spiked ridge

encountered among the first few time steps. This preliminary increase in the value of the

norm after being propagated for a few discrete sampling instants is comparable to

overshoot, the growth of the system states before settling to a final value. Beyond this

ridge the norm converges to a periodic surface, and it does so independent of the value of

k0. The value of the norm does not reach zero, but it remains bounded and does not exceed

the values of the initial “overshoot”. This permits the conclusion that the transition matrix

norm can be assigned a bound M which it will not surpass, and that this bound can be taken

independent of k0. Hence, Theorem 3.1 is satisfied and we may conclude the nominal

trajectory investigated is uniformly stable in the sense of Lyapunov. This is the strongest

stability guarantee we can obtain for a system that includes the feature quasi-states, which

allow map refinement to occur as the features are measured. It also confirms the intuition

that a system cannot drive both the vehicle and feature state estimates to zero if the map

 59

used for pre-computing the LKF filter gains and Jacobians is in need of refinement.

Figure 3-4: The transition matrix norm is plotted for the cases of both three and nine landmarks using the
four-point double integrator trajectory with map refinement. The plots encompass two complete cycles of the
trajectory and use the parameters identified in Figure 3-2.

 A few differences are noticeable between the three-feature and nine-feature plots in

Figure 3-4. The three-feature plot has a larger apparent overshoot than the nine-feature

case, and it converges to a steady-state periodic surface that is larger in magnitude than

that of the nine-feature case. Although these features are not proof of superior

performance, examination of the system eigenvalues in each case offers further support

that the nine-feature case yields improved estimation. Although this is a time-varying

system and the system’s poles change location over time, the poles of the estimator for the

nine-feature case always remain closer to the origin of the z-plane than those of the three-

feature case, and consequently the nine-feature system should exhibit faster estimation

error dynamics.

3.3.2 Map Exploitation

In search of a stronger stability guarantee for the closed-loop marine vehicle, map

exploitation is considered next, in which case the a priori map is assumed to contain the

correct feature locations and only the vehicle states are estimated (i.e., localization only).

 60

The plots of Figure 3-5 show the transition matrix norm for the (k,k0) that transit from

every initial time k0 to every final time k along two cycles of the four-point double

integrator nominal trajectory. Unlike the cases of map refinement, the norm converges to a

value of zero, and it does so irrespective of initial time k0. This means that not only may we

identify a bound M for the norm according to Theorem 3.1, but we may also apply Theorem

3.2 since the norm of (k, k0) approaches zero as k approaches infinity, independent of the

choice of k0. Thus, map exploitation is capable of achieving uniform asymptotic stability,

since the vehicle and its state estimates can be driven to zero simultaneously if the map is

accurate.

Figure 3-5: The transition matrix norm is plotted for the cases of both three and nine landmarks using the
four-point double integrator trajectory with map exploitation. The plots encompass two complete cycles of
the trajectory and use the parameters identified in Figure 3-2.

Once again, there are identifiable differences between the three-feature and nine-

feature cases. The three feature transition matrix norm exhibits a larger overshoot, and it

also converges to zero more slowly than the nine-feature case. Because the systems

depicted in Figure 3-5 are asymptotically stable, we can draw more tangible conclusions

from these plots about the behavior of the system state. As the transition matrix norm

converges to zero, it is also necessary for the system state to converge to zero. The fact that

the norm converges to zero faster in the nine-feature case confirms that the state will also

 61

converge faster, and thus the closed-loop dynamics of the nine-feature system are faster.

As both configurations use the same controller, it is once again in the estimation error

dynamics where the difference in speed emerges.

3.3.3 Estimating the Upward Gain Margin

The conditions for stability presented in Theorems 3.1 and 3.2 are both necessary and

sufficient, which means that if the transition matrix norm for a system is clearly unbounded

(i.e., it grows without bound as time increases), the system under consideration is unstable.

Only stable feature-based systems have been discussed so far, but in this section the

controller gains designed for a stable system will be uniformly amplified until the onset of

instability is observed in the behavior of the transition matrix norm. Three different

estimation strategies are compared for the four-point double integrator trajectory; map

refinement for three features, map exploitation for three features, and a measurement

process which can directly observe the states x, y, and . To ensure that this is a fair

comparison, the nominal controller gains and the Kalman filter tuning parameters are set

equal in all three cases (the LKF parameters remain unchanged from those indicated in

Figure 3-2). For the direct measurement process, this entails setting the sensor noise

variance of the x, y, and  measurements equal to the variance of the vehicle-relative range

and bearing measurements used by the four-point double integrator trajectory. The

penalty matrices S, Q, and R used to generate the feedback control gains for the four-point

double integrator trajectory are given by Table 3.1.

Table 3.1: Penalty Matrices Used for Generating Optimal Feedback Control Gains Along the
 Four-Point Double Integrator Trajectory

State Penalty
Matrix Q 



 222222 01.

1
01.
1

01.
1

25.
1

25.
1

25.
1diagQ

Input Penalty
Matrix R 



 222 05.

1
05.
1

05.
1diagR

Terminal State
Penalty Matrix S

__

 121212121212 101010101010diagS 

 62

Figure 3-6: The transition matrix norm is compared for three-feature map refinement, three-feature map
exploitation, and direct measurement of x, y, and , each for two complete cycles of the four-point double
integrator trajectory. The first row corresponds to the nominal feedback gains produced by the penalty
matrices of Table 3.1, the second and third rows correspond to gains which have been uniformly amplified by
factors of three and four, respectively.

 Figure 3-6 contains plots of the transition matrix norm for two complete cycles

of the nominal trajectory for each of the three estimation scenarios. In the top row, the

nominal feedback control gains are used, in the middle row, the gains have been

multiplied by a factor of three, and in the bottom row, the gains have been multiplied

Map
Refinement

Map
Exploitation

Direct x-y-
Measurement

 63

by a factor of four. The three systems remain stable using a factor of three (although each

exhibits larger overshoot), but a factor of four is sufficient to render all systems unstable, as

(k,k0) is unbounded and grows rapidly with increasing k in all three plots in the bottom

row of Figure 3-6. Although the x-y- measurement system exhibits less overshoot than

the two feature-based systems, its upward gain margin is similar to the feature-based

systems, indicating that use of a feature-based estimation process does not reduce the gain

margin of the closed-loop system. Just as the norm of (k,k0) was used to examine stability

in the previous sections, it can also be used to check for instability and gauge the

approximate gain margins of the system.

Although this method of examining the norm of (k,k0) predicts instability due to an

ill-conditioned controller, there are some aspects of the localization estimator which can

pass through unnoticed when ill-conditioned (such as a map whose geometry will not allow

successful localization). For this reason, we must also consider the effect of perturbations

on the system, which are needed to bring about the failure of the filter due to certain

aspects of filter conditioning. This issue will be discussed in Chapter 4.

3.4 Simulated Marine Vehicle Time Response

Thus far system stability has been investigated using the transition matrix only, and the

impact of initial conditions on system response hasn’t been addressed. To examine the

effect of initial conditions and filter tuning choices on the dynamic response of the marine

vehicle, a few time responses along the four-point double integrator trajectory are

simulated in the absence of process and sensor noise. In reality a marine vehicle will never

be located at the precise pose where its controller and estimator are initialized, and errors

in the a priori map are also likely to exist. It is important to ensure that integrated

localization, mapping, and control is robust to discrepancies of this nature if it is to be used

for autonomous ship hull inspection.

Every time response investigated here is initialized with an error either in vehicle

position or in the location of features on the a priori map. For the cases of erroneous pose

initialization, the filter is initialized with the vehicle at zero velocity, located at the inertial

 64

plane origin, with a heading of 45o. In reality the vehicle is offset 0.1m in x and in y from

this location, with the same 45o heading. For cases of erroneous map initialization, the

filter is initialized with a map in which the features are rotated 30o about their centroid

from the true feature locations. The true map is comprised of the three-feature subset

introduced in Figure 3-2. Two sets of filter tuning parameters are also varied among the

simulations; initial confidence in vehicle pose (the initial vehicle error covariance matrix)

and initial map confidence (the map confidence matrix used to initialize the error

covariance matrix). A high initial vehicle pose confidence corresponds to a diagonal

covariance matrix with entries equal to 10-2 in magnitude (used in all other simulations in

this analysis), and a low vehicle pose confidence corresponds to entries of magnitude one.

Specifically, this formulates a comparison between Gaussian estimation error distributions

with standard deviations of a tenth-meter, tenth-radian, tenth-meter-per-second and tenth

radian-per-second (respective to each of the states in the state vector) versus a standard

deviation of one meter, one radian, and so on. A high initial map confidence corresponds to

a diagonal map covariance matrix with entries equal to 10-4 in magnitude, and a low map

confidence corresponds to entries of 10-2 in magnitude. These magnitudes describe the

assumed estimation error distributions of the initial range and bearing measurements,

which possess units of meters and radians respectively. The system configurations

described here are summarized in Table 3.2. In the figures to follow, high or low

confidence will be indicated by an upward or downward-pointing arrow.

Table 3.2: Parameters Used for Analyzing Closed-Loop Time Response Sensitivity to
 Erroneous Initial Conditions

Initialization
Options:

Poor Pose Initialization:
Offset of 0.1m in x and in y

Poor Map Initialization:
A priori map is rotated 30o

Vehicle
Confidence
Options:

High Initial Vehicle Confidence:
 222222

0 101010101010  diagP
Low Initial Vehicle Confidence:

 111111
0 101010101010  diagP

Map
Confidence
Options:

High Initial Map Confidence:
 444444 101010101010  diagRC

Low Initial Map Confidence:
 222222 101010101010  diagRC

__

 65

Figure 3-7: Time response for a half-cycle of the four-point double integrator trajectory for erroneous map
initialization plotted in the x-y plane, for the case of map refinement. High confidence is expressed in the
initial vehicle pose and consequently the feature estimates gradually approach the true feature locations.

 For the case of map refinement, Figure 3-7 demonstrates that a high initial pose

confidence and low initial map confidence will allow a vehicle with erroneous map

initialization to recover; the feature estimates propagate toward the true feature locations

as the features are repeatedly observed. Figure 3-8 demonstrates that varying initial pose

confidence will influence the ability of a vehicle with erroneous pose initialization to

recover. With high initial pose confidence, the blame is placed on the map and the feature

estimates converge to enforce the errors in the vehicle pose estimate. These erroneous

estimates prevent the vehicle from being driven along the nominal trajectory. Low initial

pose confidence allows the pose estimation error to be corrected, with estimates quickly

converging to the true vehicle pose as the vehicle is driven correctly along the nominal

trajectory, although the feature estimates remain in error. For the case of map exploitation,

Figure 3-9 shows that even if initial pose confidence is high, the estimator will correct the

pose estimation error and the vehicle will converge to the nominal trajectory. This is

because the feature locations are fixed in this localization-only scenario, which can prove

Nominal Vehicle
Trajectory

LKF Estimated
Vehicle Trajectory

True Vehicle
Trajectory

Initial
Landmark
Guess

Evolving
Landmark
Estimate

Final
Landmark
Estimate True

Landmark
Location

Initial Vehicle
Pose
Confidence

Initial Map
Confidence

 66

Figure 3-8: Time response for a half-cycle of the four-point double integrator trajectory for erroneous pose
initialization plotted in the x-y plane, for the case of map refinement. Varying confidence is expressed in the
initial vehicle pose and the pose estimate’s ability to converge to the true pose depends on this.

Nominal Vehicle
Trajectory

LKF Estimated
Vehicle Trajectory

True Vehicle
Trajectory

Final
Landmark
Estimate

True
Landmark
Location

Initial Vehicle
Pose
Confidence

Initial Map
Confidence

Nominal Vehicle
Trajectory

LKF Estimated
Vehicle Trajectory

True Vehicle
Trajectory

Evolving
Landmark
Estimate

Final
Landmark
Estimate

True
Landmark
Location

Initial Vehicle
Pose
Confidence

Initial Map
Confidence

 67

Figure 3-9: Time response for a half-cycle of the four-point double integrator trajectory for erroneous pose
initialization plotted in the x-y plane, for the case of map exploitation. High confidence is expressed in the
map and initial vehicle pose and pose estimate succeeds in converging to the true vehicle pose.

more robust than map refinement if the a priori map is known to be accurate.

 To complement this assessment of simulated marine vehicle time responses,

another important question to ask in considering real-time implementation of integrated

localization, mapping, and control is whether the estimates produced by the LKF are

comparable to those produced by an EKF when the vehicle is subjected to process noise

that displaces it from the nominal trajectory. Figure 3-10 shows simulation results which

support the assertion that LKF estimation is a good predictor of EKF performance, even in

the presence of perturbations. Even though the LKF precomputed error covariance is

ignorant of the perturbations encountered, it still provides an accurate prediction of the

EKF perturbation-influenced error covariance. In addition, LKF estimation error largely

remains within a single standard deviation of the EKF’s noise-dependent estimation error

distribution, and so LKF predictions should prove a useful tool for designing EKF surveys.

Nominal Vehicle
Trajectory

LKF Estimated
Vehicle Trajectory

True Vehicle
Trajectory

Initial Vehicle
Pose
Confidence

Initial Map
Confidence

 68

Figure 3-10: Time response and covariance comparison for a half-cycle of the four-point double integrator
trajectory is plotted in the case of map exploitation, with process noise included. LKF pose estimation,
estimation error, and precomputed error covariance is compared with EKF noise-dependent pose estimation,
estimation error, and error covariance. The error covariance is plotted using bounds of 2.

3.5 A Bounding Tube Stability Test

The techniques presented in Section 3.3 serve to indicate when a closed-loop marine

vehicle is stable or unstable, but little insight is provided on the characteristics of system

convergence without simulating a vehicle time response. In particular, for cases of map

exploitation where the vehicle can achieve asymptotic stability, it is desirable to describe

the speed with which the system converges to its equilibrium point. A special feature of the

eigenstructure of a system carrying out map exploitation will allow exactly such a

description to be formulated.

As described earlier, the map exploitation framework uses a state vector containing

the six vehicle states only, since the feature locations on the a priori map are assumed to be

trustworthy. The map refinement framework, on the other hand, has two states in its state

vector for each feature on the map, and even though the feature state estimates can change,

True
Trajectory

Nominal
Trajectory

LKF
Estimated
Trajectory

EKF
Estimated
Trajectory

2

 69

the feature states themselves are static. Since the feature positions can’t be influenced by

the system’s controller, the state transition matrix of the map refinement framework

possesses eigenvalues of value one corresponding to each of the static feature states.

Because the state vector of the map exploitation framework contains only the vehicle

states, and all of these states can be influenced by the system’s controller, the map

exploitation framework can maintain all eigenvalues within the unit circle. A system in

which all eigenvalues lie within the unit circle is known as a Hurwitz system, and a variety

of techniques for describing the convergence rate of linear time-varying Hurwitz systems

have been developed [55], [56].

A recent result from Mullhaupt, Buccieri, and Bonvin [57] documents a numerical

sufficiency test for asymptotic stability of linear time-varying Hurwitz systems which at

each time step defines an ellipsoid in which the system is guaranteed to stay. A Lyapunov

function of the form:

)()()(txPtxtV i
T (3.13)

is computed at each time step and applies from time ti to ti+1. The algorithm may be

summarized as follows:

1) Approximate the maximum value of (3.13):

 Compute , the largest eigenvalue of Pi, then:

)))()((max()(111 tAPPtAeigt ii
T

i  





i

i

t

t
iii dVV

1

))(1exp(ˆ
11 


 (3.14)

2) Define (3.13) for the current time step:

 Find the Lyapunov function by solving for Pi:

)()(iii
T

i tAPPtAI  (3.15)

3) Compute the maximum value of (3.13):

 Solve the following constrained optimization problem:

 
maxiV  i

T P

 ii
T VP ˆ0 1    (3.16)

 70

in (3.14) must be chosen so it is at all times negative. The maximum value of the

Lyapunov function Vi is used both as the sufficiency criterion for asymptotic stability and

also to define an ellipsoid in which the system is guaranteed to be found from time ti to ti+1.

If an ordered subsequence Vj can be extracted from the sequence of Vi, and each member of

Vj is monotonically decreasing relative to the respective member of Vj-1, then the system is

uniformly asymptotically stable. In addition, if x0 is chosen so that x0TP0 x0 ≤ V0 , then

x(t)TPi x(t) ≤ Vi for all t from ti to ti+1. Mullhaupt, Buccieri, and Bonvin supply proof of these

guarantees in their statement of the algorithm.

Figure 3-11: The bounding tube parameter Vi is shown for the four-point double integrator trajectory using
the three-feature subset for map exploitaiton. A bounding tube for the system’s estimation error in the surge
direction is shown. The period of the four-point double integrator trajectory is slowed to 2 min, since faster
trajectories failed to satisfy the sufficiency test.

Figure 3-11 shows the application of this sufficiency test to the four-point double

integrator trajectory, which qualifies as uniformly asymptotically stable for the indicated

 71

choice of parameters. The estimation error in the surge direction is explored using a

bounding tube for u and x while the estimation error of the other four vehicle states is held

at zero. The analysis isolates position and velocity in a single degree of freedom so that the

bounding ellipsoid simplifies to a 2-D ellipse that varies in size along the nominal

trajectory. Any estimation errors in u and x that begin within this bounding tube are

guaranteed to stay within the tube. This test yields a quantitative bound for the stability of

the map exploitation process, although unlike the transition matrix norm criteria, it is a

sufficiency test only, and confirms stability only when a system is sufficiently slowly time-

varying. Hence, the period of 16 seconds used in all other simulations of the four-point

double integrator trajectory must be slowed to 120 seconds for the test to succeed. To

demonstrate the sensitivity of this sufficiency test, the period of the vehicle simulation used

in Figure 3-11 is decreased from 120 to 96 seconds, requiring a faster completion of the

four-point double integrator nominal trajectory, and the bounding tube test fails to

guarantee uniform asymptotic stability, with Vi diverging in Figure 3-12.

Figure 3-12: The bounding tube parameter Vi is shown for the four-point double integrator trajectory
explored in Figure 3-12, with the period adjusted to 96 seconds to bring about failure of the sufficiency test.

 Although a set of guaranteed boundaries on system behavior make this an appealing

stability test, the requirements on the slowly-varying nature of the system to which the test

is applied are limiting. Since future plans for autonomous ship hull inspection involve fast

execution of aggressive survey trajectories, other techniques are pursued in greater depth

for describing the stability and robustness of the integrated localization and control

process.

 72

3.6 Preparing for Experimentation

Looking ahead to the experimental implementation of integrated localization, mapping, and

control on the raft platform, the two-point experimental trajectory introduced in Section

3.2 (Figure 3-3) is now considered. Rather than using double integrators, experimentally

derived mass and damping parameters are now substituted into the vehicle model, and the

vehicle is assigned a more conservative nominal trajectory designed for experiment. To

predict the stability of the raft system in advance of any experiments, the transition matrix

norm of the two-point experimental trajectory is computed and plotted along two cycles of

the nominal trajectory for both map refinement and map exploitation, given by Figure 3-13.

In addition, the feedback control gains are amplified to approximate the system’s upward

gain margin. The values of the model parameters and the feedback controller penalty

matrices used for the two-point experimental trajectory are summarized in table 3.3.

Table 3.3: Penalty Matrices Used for Generating Optimal Feedback Control Gains Along the
 Two-Point Experimental Trajectory, and Raft Model Parameters

Raft Model
Parameters:

Mass:
3.8 kg

Rotational Inertia:
.08 kg m2

Linear
Damping:
2.2 Ns/m

Rotational
Damping:
.06 Nms/rad

State Penalty
Matrix Q 





222222 01.
1

01.
1

01.
1

25.
1

25.
1

25.
1diagQ

Input Penalty
Matrix R 



 222 003.

1
008.

1
03.
1diagR

Terminal State
Penalty Matrix S

__

The upper left plot of Figure 3-13 displays, for the case of map refinement, the

values of the transition matrix norm for the (k,k0) that transit from every initial time k0 to

every final time k along two cycles of the two-point experimental trajectory. The now-

familiar qualities of an overshoot followed by convergence to a periodic surface can be

observed for this trajectory. This plot permits the conclusion that the transition matrix

norm can be assigned a bound M which it will not surpass, and that this bound can be taken

independent of k0. Since Theorem 3.1 is satisfied, uniform stability in the sense of

Lyapunov is achieved for this map refinement scenario. In addition, the upper right plot of

 121212121212 101010101010diagS 

 73

Figure 3-13: The transition matrix norm is plotted for the two-point experimental trajectory. Cases of both
map refinement and map exploitation are considered. The plots encompass two complete cycles of the
nominal trajectory, using the parameters identified in Figure 3-3.

Figure 3-13, which displays the norm for the case of map exploitation, demonstrates

convergence to zero which occurs independently of k0. Since Theorem 3.2 is satisfied,

uniform asymptotic stability is achieved for this map refinement scenario. The bottom of

Figure 3-13 displays transition matrix norm plots for a map exploitation case in which the

nominal controller gains are amplified by factors of five and six, respectively. The system

remains stable using a factor of five, but a factor of six is sufficient to render the system

unstable, as (k,k0) is unbounded and grows rapidly with increasing k.

In the absence of perturbations, this system appears stable and robust, although

 74

perturbations from the nominal trajectory must be considered explicitly before drawing

this conclusion. The stability tools introduced in this chapter which rely on numerical

computation of the closed-loop transition matrix norm, in addition to comprising a new

technique for the evaluation of linear time-varying systems, will prove pivotal in enabling

an analysis of perturbations that will identify ill-conditioned estimator configurations.

 75

Chapter 4

Perturbed Marine Vehicle Stability

Analysis

Analysis of the transition matrix of a marine vehicle performing integrated localization,

mapping, and control has produced a numerical stability test that indicates whether or not

the closed-loop system is stable in the absence of perturbations. It was shown in Section

3.3 that instability due to an ill-conditioned feedback controller is successfully predicted by

this test. Although it is important to ensure the stability of the controller, analysis of the

transition matrix norm will not always detect an ill-conditioned estimator. In particular,

the method of Chapter 3 fails to consider the estimation challenges created by displacing

the vehicle from the nominal trajectory. Once the vehicle is displaced from the nominal

trajectory, it must successfully localize while facing linearization inaccuracies that worsen

with the magnitude of the displacement. In addition, when the vehicle is displaced the

deterministic series of measurements anticipated along the nominal trajectory will not

arrive as expected, and the vehicle must use the surrounding features to infer how far it has

been displaced. The difficulty of this task will vary depending on the layout of features on

the a priori map.

A robustness performance metric is defined in this chapter which considers the

effect of such perturbations on stability, and a method is introduced which permits a

comparison of relative robustness among different system configurations. A specific

example is presented in which the performance metric is used to assess the variation in

robustness resulting from a variation in the geometric pattern of features on the map. This

 76

chapter closes with a consideration of how this performance metric may be used to plan a

path among a set of features that is optimized for robustness against perturbations.

4.1 The Perturbation Matrix

To understand the system’s behavior in the presence of perturbations we must consider

how the governing equations change when the vehicle is displaced from the nominal

trajectory. Because a displacement from the nominal trajectory renders the linearization

of the nominal state transition Jacobian F and measurement Jacobian H incorrect,

correction terms F and H are needed to express the true location of the vehicle. Despite

this, the need for correction is unknown to the estimator. Using these correction terms the

propagation of the state and the estimate appears as follows:

 wxNBGxFFx kkkkkk  ˆ)(1 

]ˆ[ˆˆ |1111|11 kkkkkkkk xHzKxx   

 (4.1)

 kkkkk xNBGFx ˆ)(ˆ |1  

 11111)(  kkkkk xHHz 

These equations can be manipulated to produce an aggregate system whose state vector is

identical to that of (3.12), and all terms containing the correction matrices F and H can

be collected in an aggregate perturbation matrix Ak, where Ak is given by (4.2):














 NBGHKFHNBGFFHKF
F

A
kkkkkkkkkkk

k
k

11111)])(([
0

 (4.2)

The aggregate perturbation matrix is combined with the state transition matrix of equation

(3.12) as well as the process and measurement noise to express the perturbed system

equations as follows:
















































k

k
k

k

k
k

k

k

x
x

A
x
x

A
x
x

~~~
1

1































 k

k

kkkk v
w

KHHKI 1111 )]([
0

       (4.3) 

The state transition matrix of equation (3.12) is represented here by Ak.  The solution of 

this difference equation for the system state at a specific time k can be found by multiplying 

successive transition matrices Ak, as was performed in Chapter 3.  The notation (k,k0) will 



 77 

once again be used to represent the transition matrix which propagates the system state 

from time k0 to time k.  Given the notation of (4.3), (k,k0) would be computed by 

multiplying all Ak from A0 to Ak-1.  This solution of (4.3) is given below by (4.4):  

           


















































 


 i

i
i

kk

kik

k

k

k

x
x

Akik
x
x

kk
x
x

~),1(~),(~
0

00

0
1

00 








                    (4.4) 

                             




































i

i

iiii

kk

ki v
w

KHHKI
kik

1111

1

0 )]([
0

),1(
0

0

 

By taking the Euclidean norm of both sides of this equation, (4.4) is transformed into an 

inequality that bounds the size of the aggregate state vector. 

        


















































 


 i

i
i

kk

kik

k

k

k

x
x

Akik
x
x

kk
x
x

~),1(~),(~
0

00

0
1

00 








 

                      




































i

i

iiii

kk

ki v
w

KHHKI
kik

1111

1

0 )]([
0

),1(
0

0         (4.5)
 

If the right side of (4.5) converges to zero as k approaches infinity, then the left side of the 

inequality is forced to converge in turn, and it may be concluded that (4.3) is asymptotically 

stable.    If this convergence holds for any value of k0, then (4.3) is uniformly asymptotically 

stable.  An analysis by Chen and Dong in 1988 presented a condition required for the 

convergence of (4.5) and the consequent stability of (4.3) that depends on the size of the 

perturbation matrix A [58].       

 

Theorem 4.1.  The null solution of equation (4.3) is uniformly asymptotically 

stable if two conditions are satisfied.  First, the system must be uniformly 

asymptotically stable in the absence of perturbations, indicated by the 

following: 

                                                           
kmrkk  ),( 0                        

This means that the Euclidean norm of the state transition matrix must be 

bounded by a discrete exponential with parameters m and r, and that this 

bound holds independently of k0.  Second, for a series of perturbation 

matrices Ak, the following must also hold for all k:  

( 0m , 10  r ) 



 78 

m
rAk




1
 

If both conditions are satisfied, then the system will remain uniformly 

asymptotically stable in the presence of plant perturbations Ak.  

 

A detailed proof of Theorem 4.1 is presented by Chen and Peng [59].  Convergence of (4.5) 

is proven by applying the Bellman-Gronwall lemma, which allows an integral inequality to 

be expressed in terms of an exponential whose convergence may be assessed directly.  A 

presentation of Theorem 4.1 for continuous time systems is given by Weinmann [60].   

The conservative nature of Theorem 4.1 requires that the unperturbed system 

under consideration must be uniformly asymptotically stable, which excludes cases of map 

refinement from evaluation since these cases achieve Lyapunov stability at best.  

Consequently, map exploitation is the only control and estimation framework considered 

for the remainder of this analysis.  A method is presented for choosing the map exploitation 

system configuration best equipped to handle a given perturbation of size Ak , but it is also 

remains our goal to find the map refinement system configuration that is best equipped for 

perturbations.  It is presently conjectured that the system configuration which is best-

suited for robustness in cases of map exploitation will also be best-suited for robustness in 

cases of map refinement.   

4.2 A Robustness Performance Metric 
 
One challenge in implementing Theorem 4.1 is choosing appropriate perturbation matrices 

Ak. In this analysis a displacement of constant magnitude is iteratively imposed on the 

vehicle at each sampling instant of the nominal trajectory. Because the inequalities of 

Theorem 4.1 must hold for all k, we need only find the single Ak for a given displacement 

magnitude which yields the largest norm over the entire nominal trajectory, and if the r 

and m parameters match this norm we are guaranteed stability for the entire trajectory.  

The displacements are applied in one degree of freedom only, and robustness in each 

degree of freedom is considered separately.  An example of how the displacements would 

be applied to our experimental nominal trajectory is given by Figure 4-1. 



 79 

  
Figure 4-1: A visualization of displacements y, x, and  imposed on the two-point experimental nominal 
trajectory.  Once the displacement size is selected, each displacement is added and also subtracted from the 
nominal trajectory at each sampling instant.  The resulting A from each displacement is stored, and the 
single largest ||A|| in each degree of freedom is selected for the application of Theorem 4.1.   
 

  The parameters r and m are obtained by bounding the surface plot of the (k,k0) 

Euclidean norm with an exponential function that the transition matrix norm will never 

exceed.  As one can observe from the plots of Chapter 3, plotting the transition matrix norm 

from every choice of initial time k0 to every choice of final time k along the nominal 

trajectory forms a 3-D surface, and the behavior of this surface must be captured by a 2-D 

exponential function.  To achieve this, the value of k0 which yields the single worst-behaved 

curve (i.e., the curve which contains the single largest value of the norm) between (k0,k0) 

and (k,k0) is extracted, the curve is shifted so that k0 is set to a value of one, and an 

iterative algorithm is employed to efficiently fit an exponential function of the form mrk to 

this curve while exceeding it in value for all k.  First a least squares fit is performed on the 

curve of the (k,k0) norm from k0 to the final value of k, and then a series of exponential 

functions of the form mrk are computed for a discrete range of values of r and m spanning 

from the least squares  values to values that far exceed them.  Each function is evaluated at 

y 

x 

 



 80 

all values of k to determine whether the exponential function exceeds the transition matrix 

norm in value for the entire range of k, and the exponential functions that fail to achieve 

this are thrown out.  Finally, the integral over k of each exponential function that 

successfully bounds the transition matrix norm is evaluated and the one with the smallest 

integral is chosen as the most efficient bounding curve.  The values of r and m of this 

winning curve are applied to Theorem 4.1.  Finding the most efficient bounding curve is 

important because smaller values of r and m are more likely to satisfy Theorem 4.1.       

By comparing the parameters r and m of the exponential bounding curve with the 

norm of the largest Ak, it is apparent when the system is guaranteed asymptotically stable.   

In general, the maximum perturbation magnitude for which Theorem 4.1 guarantees 

stability may be smaller than the maximum perturbation for which stability is attainable, 

since this is a sufficiency test only, and our algorithm chooses the worst-case Ak over the 

entire nominal trajectory. Despite this, by comparing the stability guarantees obtained for 

different system configurations, the relative robustness of two trajectories, maps, or 

otherwise can be compared.  In this manner the right side of the Theorem 4.1 perturbation 

inequality is used as a robustness performance metric. 

4.2.1 Simulated Robustness Predictions 
 

As an illustrative example, the effect of feature spacing on vehicle robustness can be 

investigated using this performance metric.  For the simulations and experimental results 

to be presented, the experimental trajectory introduced in Figure 3-3 is used (along with 

the model parameters given in Figure 3-3 and Table 3.3), and the spacing of the three 

features on the a priori map is varied incrementally.  Starting with three features 

condensed to a single point and gradually separating them until they achieve the 

configuration shown in Figure 3-3, the maximum perturbation magnitude for which 

stability is guaranteed can be computed for each feature configuration.  This is 

demonstrated in Figure 4-2, in which the maximum value of ||A|| is plotted for varying 

configurations of features, for varying perturbation magnitudes, and separately in each 

degree of freedom.  The perturbation norm is compared with the r and m parameters of the 

exponential fit to (k,k0) for each configuration.   



 81 

 
Figure 4-2: The perturbation matrix norm is plotted in each degree of freedom as a function of feature 
spacing for perturbations of incrementally varying magnitude (captured on the solid blue lines).  Alongside 
each set of perturbation matrix curves is plotted the exponential bounding curve performance metric (the 
dashed red line), indicating the maximum perturbation size for which each feature layout is asymptotically 
stable.  The smallest feature spacing considered in this plot is 0.01m, since a spacing of 0m yields a 
performance metric of zero, which cannot be expressed on the above logarithmic scale. 

 

To offer an example of what we may conclude from these plots, the bottom right 

plot of Figure 4-2 shows that the vehicle is guaranteed stable against angular perturbations 

of order 10-3 radians for a feature spacing of 0.1m, since the performance metric (the red 

dashed curve) exceeds the norm for perturbations of this magnitude (the nearest solid blue 

curve).  This guarantee cannot be made for a feature spacing of 0.01m, since the worst-case 

norm for perturbations of magnitude 10-3 radians exceeds the robustness performance 

10-2 m 

10-3 m 

10-4 m 

10-2 m 

10-3 m 

10-4 m 

10-1 rad 

10-2 rad 

10-3 rad 

A

m
r1



 82 

metric for this feature configuration.  Hence, a vehicle observing features with a spacing of 

0.1m is more robust than if it were observing features with a spacing of 0.01m, since it is 

guaranteed stable against larger-sized perturbations.  The minimum-sized perturbation for 

which the marine vehicle is guaranteed stable would correspond to the value of ||A|| that 

coincides exactly with the value of the robustness performance metric.  Since it is not 

computationally feasible to plot ||A|| curves for all possible perturbation sizes, plotting 

curves for a few values of ||A|| is sufficient to understand the perturbation sizes for which 

a given system configuration is stable.  In the plots of Figure 4-2 corresponding to 

perturbations in surge and sway, it is clear that none of our map configurations yield a 

system that could be guaranteed stable against perturbations of 10-3m in size, but there are 

configurations whose performance metric comes a lot closer than others to the ||A|| curve 

for  10-3m-sized perturbations.  The shape of the blue ||A|| curves conveys clearly that 

there is a perturbation size between 10-4m and 10-3m for which features spread 0.3m apart 

can be guaranteed stable and features spread 0.01m apart cannot.  By choosing a 

benchmark perturbation size and comparing the distance between ||A|| and the 

robustness performance metric for different system configurations, the relative robustness 

of any two configurations can be compared.  

In general, Figure 4-2 permits the conclusion that maps with a wider spacing 

between features are guaranteed stable against larger-sized perturbations, although the 

performance metric exhibits asymptotic behavior and there is a point beyond which no 

significant gains in robustness are achieved by spreading the features further.  This point 

can be identified more clearly by choosing a perturbation size whose ||A|| curve bounds 

the robustness performance metric, and normalizing the ||A|| curve by the robustness 

performance metric.  This was performed for the results of Figure 4-2, and the middle 

||A|| curve pictured in each plot was normalized by the performance metric curve for each 

degree of freedom.  The results are displayed in Figure 4-3.  A “knee” appears in each curve 

of this normalized performance ratio which confirms the previous intuition that beyond a 

spacing of approximately 0.05m between features, no significant gains are made in 

robustness.       



 83 

 
Figure 4-3: The ratio of perturbation norm ||A|| to the robustness performance metric is plotted as a 
function of feature spacing using the data of Figure 5-2.  The curve is identical in appearance in x and in y.  A 
“knee” becomes evident after which the curve exhibits approximately asymptotic behavior, after which no 
significant gains in robustness are made by spreading the features further.   
 

Although it may be an intuitive result that a vehicle performing localization and 

control is more robust if the features are spread further apart, Theorem 4.1 provides a 

framework through which this result may be formally proven.  This will prove useful in 

more complex scenarios where it is unclear intuitively which of several map configurations 

can achieve the best stability guarantee.  Before applying this method to a more complex 

scenario, the complete algorithm for making a robustness comparison among different 

system configurations is given by Algorithm 4-1. 

4.3 Experimental Results 
 
The predictions of Figure 4-2 were verified experimentally using the holonomic raft 

pictured in Figure 3-1.  This vehicle carried out map exploitation and attempted to execute 

the two-point experimental nominal trajectory of Figure 3-3 using feature spacings of 0.3m, 

0.05m, and 0m.  These spacings were chosen since 0.3m is near the asymptotic upper limit 

of the performance metric in Figure 4-2, the performance metric for 0.05m is about 50% 

smaller than this asymptotic limit, and 0m has a performance metric of zero, since (k,k0) 

does not converge to zero when all three features share the same location (and so this case 

is never guaranteed asymptotically stable).   

. . 



 84 

_________________________________________________________________________________________________________ 
Algorithm 4-1: The Robustness Comparison Algorithm 
1: Choose a system parameter p whose influence on robustness is to be analyzed. 
2: for all values of p do  
3: for all perturbation magnitudes  do  
4:  for each degree of freedom f do 
5:   for each sampling instant along the nominal trajectory do 
6:    Displace the vehicle by positive and negative  in f. 
7:    Compute the measurement Jacobian H in each location. 
8:    Subtract the nominal measurement Jacobian to obtain H. 
9:    Compute the state transition Jacobian F in each location. 
10:    Subtract the nominal state transition Jacobian to obtain F. 
11:    Compute A according to (5.2). 
12:    Compute and store ||A||, the Euclidean norm of A.   
13:   end for 
14:   Store the maximum ||A|| found along the nominal trajectory. 
15:  end for 
16: end for 
17: Compute ||k,k0)|| from all k0 to all k along a few cycles of the nominal trajectory.  
18: Find the k0 whose curve from k0 to k yields the largest value of ||k,k0)||. 
19: Apply least squares to fit an exponential of the form mrk to this curve. 
20: for values of m from mlsq to mmax do 
21:  for values of r from rlsq to 1 do 
22:   if mrk bounds the ||k,k0)|| curve everywhere then 
23:    Compute and store the integral of mrk.  
24:   else then 
25:    Throw out m and r. 
26:   end if 
27:  end for 
28: end for 
29: Find the minimum mrk integral that was stored, this is the winning exponential. 
30: Compute and store ((1-r)/m) for this exponential function.  
31: end for    
32: Compare the worst-case perturbation norms ||A|| for each p, f, and d with the                        

robustness performance metric ((1-r)/m) in all p and f.  
 

Figure 4-4 demonstrates that the 0.3m spacing yielded the most effective closed-

loop vehicle, as the raft adhered closely to the nominal trajectory and the estimator 

adhered closely to the vehicle’s true location.  The small errors that did occur in following 

the nominal trajectory were due to perturbations in the water tank testing environment 

and interference from the vehicle tether.   The 0.05m spacing caused significant errors in 

the  estimator,   which   at   times   remained  closer  to  the  nominal  trajectory  than  to  the  



 85 

 
Figure 4-4: The raft platform was driven along the two-point experimental nominal trajectory for three 
different configurations of three point features.  The feature locations, nominal trajectory, vehicle position 
estimates, and vehicle position ground truth are plotted for two complete cycles of the nominal trajectory.   
 

vehicle’s true location and thus the vehicle failed to execute the entirety of the nominal 

trajectory.  In the 0m spacing case (which effectively consists of a single feature on the 

map)   the   estimator   failed  completely  and   the  vehicle  was  driven  off  of  the  nominal  

trajectory.  Figure 4-5 isolates performance in the angular degree of freedom and displays 

filter estimation error alongside the displacement of the raft from the nominal trajectory.  

Here it becomes clear that in the 0.05m and 0m cases, instability results, as the estimator 

failed to converge to the true location of the vehicle.  If the estimator cannot accurately 

represent the true state of the vehicle, then the controller will issue inappropriate 

commands and the closed-loop system will fail to execute the nominal trajectory.  Although 

Theorem 4.1 only provides a sufficiency condition and doesn’t explicitly predict vehicle 

instability,  in  this  case  it  called  for  selection  of  the map  best-suited for localization and  



 86 

 
Figure 4-5: For the same three experimental trajectories displayed in Figure 4-2, estimator performance in 
the angular degree of freedom is isolated and estimation error is plotted alongside vehicle displacement from 
the nominal trajectory.  All plots display data from two complete cycles of the nominal trajectory. 
 
closed-loop control, avoiding less robust feature configurations which ultimately brought 

about system instability.  Of course, in most autonomous vehicle scenarios it most likely the 

case that the map cannot be varied and it is instead the shape of the trajectory which is 

easiest to design for robustness considerations.  Consequently, this method of robustness 

comparison is next extended to the problem of choosing the nominal trajectory that is most 

robust.   

4.4 Application to a Real Ship Hull Inspection Scenario 
 
Looking ahead to implementation of the robustness comparison algorithm on the HAUV 

itself, the robustness performance metric was used to investigate which of two candidate 

trajectories is a more robust ship hull survey trajectory.  The HAUV hull survey trajectories  

Feature Spacing: 0.3m 

Feature Spacing: 0.05m 

Feature Spacing: 0m 



 87 

 

Figure 4-6: The robustness performance metric is used to evaluate two HAUV candidate trajectories. The 
perturbation matrix norm is plotted in the angular degree of freedom as a function of vehicle cruising speed 
for angular disturbances of incrementally varying magnitude (the solid blue lines).  Alongside each set of 
perturbation matrix curves is plotted the exponential bounding curve performance metric, indicating the 
maximum perturbation size for which each hull survey trajectory is asymptotically stable (expressed as a 
series of red points with a best-fit line). 
 

depicted in Figure 4-6 were selected heuristically based on simplicity and apparent hull 

coverage, and both have been used frequently in vehicle experiments performed on the hull 

that is pictured.  The King Triton is a US Coast Guard Inland Buoy Tender that is 

approximately 30m in length and 7m in width, and the twelve zinc anodes mounted on the 

hull are easily recognized in imaging sonar data, making them ideal map features.  For the 

two trajectories evaluated in Figure 4-6, the vehicle is only permitted to observe features 

that fall within a viewing window sized to reflect the viewing window of the DIDSON 

imaging sonar.  Trajectory 1 keeps the viewing window oriented width-wise along the hull 

and Trajectory 2 keeps the viewing window oriented lengthwise along the hull.    

A m
r1



 88 

The relative robustness of these trajectories is challenging to predict since the 

vehicle viewing window is limited in size and only a subset of the features will be observed 

at each measurement step.  If the cruising speed of the vehicle is varied, the frequency at 

which features will be observed will vary in turn.  The robustness performance metric was 

computed along each nominal trajectory for a variety of cruising speeds, and the 

perturbation matrix norm ||A|| was computed for a variety of perturbation magnitudes in 

each degree of freedom.  The dynamic model used to compute the transition matrix and 

perturbation matrix was identical in structure to that used for the raft, but experimentally 

derived inertial and damping parameters for the HAUV were used instead of raft 

parameters.  These parameters along with tuning parameters used for the HAUV linearized 

Kalman filter are given in Table 4.1.  An additional change from previous simulations is that 

odometry in each degree of freedom was added among the measurement capabilities since 

there are short instances along the hull survey trajectories where no features are visible.   

Figure 4-6 contains plots showing the variation in ||A|| and the variation in the 

robustness performance metric in the angular degree of freedom as the cruising speed of 

the vehicle is varied along each nominal trajectory (results in the other two degrees of 

freedom were similar in appearance).  Unlike the clean and smooth results of Figure 4-2, 

the robustness performance metric tends to jump around in value as the vehicle cruising 

speed is varied.  This is because the vehicle observes an entirely different sequence of 

features at each cruising speed, and the varying system configurations are not as tightly 

linked as they were for the raft scenario explored in Figure 4-2.  To obtain an idea of the 

general behavior of the robustness performance metric for each trajectory, a least squares 

fit was performed on the data and the resulting best-fit line is plotted alongside the raw 

data.  Using this best-fit line as an approximation for the behavior of the robustness 

performance metric, the plots demonstrate that Trajectory 1 is guaranteed to tolerate 

perturbations approximately an order of magnitude greater than those for which 

Trajectory 2 is equipped.  For almost all nominal cruising speeds Trajectory 1 is guaranteed 

stable against perturbations of 10-4 radians in size, while Trajectory 2 achieves this 

guarantee for very few cruising speeds.  Hence, the performance metric would indicate that 



 89 

Trajectory 1 is the robustness-optimal choice from among the two candidates, as it is 

guaranteed to yield asymptotic stability for larger-sized perturbations than Trajectory 2. 

Table 4.1: Parameters used for HAUV Robustness Simulation 

DIDSON Viewing 
Window 
Parameters: 

Min Visible Range:  
2m 

Max Visible 
Range: 7m 

Min/Max Heading:  
 15 degrees 

Discretization: Sampling Interval: 0.5 s 
Vehicle Process 
Noise Parameters: 

Process noise 
variance, surge:  
0.1 (m/s2)2 

Process noise 
variance, sway:  
0.1 (m/s2)2 

Process noise variance, 
roll:  
0.1 (rad/s2)2 

Odometry Sensor 
Noise Parameters: 

Sensor noise 
variance, surge 
odometry:  
0.1 (m/s)2 

Sensor noise 
variance, sway 
odometry:  
0.1 (m/s)2 

Sensor noise  
variance, roll odometry:  
0.1 (rad/s)2 

Feature Detection 
Noise Parameters: 

Sensor noise variance, vehicle-
relative range: 0.01 (m)2 

Sensor noise variance, vehicle-
relative bearing: 0.01 (rad)2 

HAUV Model 
Parameters: 

Mass:  
113 kg 

Rotational 
Inertia:  
8 kg m2 

Linear Damping:  
55 Ns/m 

Rotational 
Damping:  
3 Nms/rad 

Initial Vehicle Error 
Covariance: 

 111111
0 101010101010  diagP

 
Initial Map 
Confidence: 

 444444 101010101010  diagRC
 

State Penalty 
Matrix Q 



 222222 001.

1
001.

1
001.

1
25.
1

25.
1

25.
1diagQ  

Input Penalty 
Matrix R 



 222 05.

1
05.
1

05.
1diagR  

Terminal State 
Penalty Matrix S 

 

_____________________________________________________________________________________________________________________ 
The evaluation of a real ship hull inspection scenario demonstrates the versatility of 

the robustness comparison algorithm presented in this chapter.  Systems with a wide 

variety of constraints can be accommodated, such as the addition (or lack of) odometry, a 

sensor footprint of highly specific geometry, and even a time-varying number of incoming 

measurements.  The only hard requirement of the robustness comparison algorithm is that 

the closed-loop system must be expressed within a linear time-varying state space 

framework and must be capable of achieving asymptotic stability in the absence of 

perturbations.    

 121212121212 101010101010diagS 



 90 

Although the most robust trajectory was selected from among the two candidates 

evaluated, there is of course the possibility that there are trajectories better-suited for 

robustness than those evaluated here.  Consequently, the challenge of robustness-optimal 

motion planning is addressed in the next chapter.  Rather than heuristically choosing a 

series of candidate trajectories and evaluating their relative robustness, a trajectory is 

designed and optimized for robustness simultaneously, using the robustness performance 

metric to evaluate the trajectories that result from different control choices and making 

these control choices accordingly. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91 

 
 
 

 
Chapter 5 

 
Robustness-Optimal Motion Planning 
 
The process of finding the most robust closed-loop system configuration for a holonomic 

marine vehicle is next combined with a globally optimal kinodynamic motion planning 

algorithm.  As introduced in Chapter 4, a system configuration is designated the most 

robust configuration if it achieves a guarantee of asymptotic stability against a larger sized-

perturbation than other competing system configurations.  Rather than heuristically 

choosing a handful of system configurations and evaluating their relative closed-loop 

robustness, as was done in Chapter 4, a modified A* algorithm is used to select the most 

robust trajectory from among all trajectories in the vehicle state space that connect a given 

start waypoint and a given goal waypoint.  The robustness-optimal trajectories selected by 

the kinodynamic planning algorithm are adapted for experimental implementation on the 

raft and compared with A* trajectories that do not consider the robustness performance 

metric. 

5.1 Augmented A* Algorithm 
 
As described in Chapter 1, the A* algorithm finds the optimal path between a start node 

and a goal node on a graph given a cost function that consists of a cost-to-come, which is 

the cost incurred along the path that has been traveled from the start node, and a cost-to-

go, which approximates the cost to be incurred by traveling to the goal node.  This standard 

A* cost function is given by (5.1): 

gocometotal CCC                                                                   (5.1) 



 92 

The simplest implementations of A* plan on graphs which represent the 2-D spatial plane.  

Although in many cases the ship hull inspection problem can be idealized as a planning 

problem in the 2-D plane, spatial planning completely neglects the marine vehicle’s 

dynamic model, hence neglecting the control effort and time required to move the vehicle 

from one location to another along a ship hull.  Even though a straight-line trajectory 

between the start and the goal might be the most efficient in terms of path length, effort, 

and time, a purely spatial path does not inform the vehicle operator of how to command 

the vehicle from the start to the goal.   For this reason, the approach of kinodynamic 

planning is adopted and A* is employed to search the vehicle’s control input space.  

5.1.1 Kinodynamic Planning in Control Input Space 
 

By planning in the space of possible vehicle control actions, a trajectory between a start 

configuration and goal configuration may be found which rewards efficient use of control 

effort rather than simply choosing the shortest spatial path.  Because searching the entire 

continuous space of possible control inputs is computationally infeasible, a set of nine 

discrete input choices is selected.  Once issued, each input command must be applied for a 

fixed time interval before the next command may be delivered.  To further improve the 

computational feasibility of searching the control input space, the vehicle is not allowed to 

make any adjustments to its heading, and can actuate only in surge and sway.  The cost 

associated with each input choice is heuristically formulated to penalize the expenditure of 

energy and of time.  Figure 5-1 displays the nine discrete control input choices and their 

associated costs tabulated in a spatial grid.  In this grid, a positive surge thrust is located 

one unit to the right from the center, and a negative surge thrust is located one unit to the 

left from the center.  A positive sway thrust is located one unit up from center, and a 

negative sway thrust is one unit down.  Applying positive thrust in surge and sway 

corresponds to the grid’s upper right corner, and so on.  The location of these input choices 

on the nine-by-nine spatial grid corresponds approximately to the energy required to 

implement them.  Costs are assigned to the eight outermost input choices based on the 

Euclidean distance of each grid entry from the center.  The center square is assigned a non-

zero cost so the vehicle does not find sitting idle to be the cheapest action.  In addition, this 



 93 

cost is less than the cost of single-actuator thrust so the vehicle will opt to coast along 

without using additional thrust once it is close to the goal, instead of hitting the goal at top 

speed.   

 
Figure 5-1: The discrete input choices used for implementation with A* are displayed in a spatial grid.  The 
distance of each choice from the center corresponds to the relative energy required to enact its input thrust 
command.  Input choices with equivalent cost are assigned the same color. 

5.1.2 Tree Graph 
 

An A* algorithm which plans in the vehicle’s input space demands a special type of graph 

structure.  Unlike taking steps in a spatial grid, the ordering of the input commands applied 

to the vehicle is not commutative, and so applying a surge thrust, followed by a sway thrust 

will not leave the vehicle in the same state as applying a sway thrust, followed by a surge 

thrust.  The vehicle state matters because the start and goal nodes of the planning 

algorithm correspond to vehicle poses in the 2-D plane, and even though the planning 

occurs in the input space, the resulting vehicle state after each input thrust must be stored 

for comparison with the goal configuration.  Each path between nodes represents a series 

of input commands which has defined a completely unique location for the vehicle, and 

encoded in each node is not only an input command, but a vehicle state which was 

produced by applying this series of commands.  As a result, the propagation of the graph 

cost = 2 C0 

cost = 2 C0 


















0
v

u

f
f

u



















0

v

u

f
f

u


















0

0

vfu


















0

0

vfu


















0
0

uf
u


















0
0

uf
u


















0
0
0

u

cost = C0 

cost = C0 

cost = C0 


















0
v

u

f
f

u

















0
v

u

f
f

u

cost = 2
1 C0 

cost = 2 C0 

cost = C0 

cost = 2 C0 



 94 

from a given node may only radiate outward from the node and can never wind back to 

previously visited nodes as would be the case for 2-D spatial planning. 

 
Figure 5-2: A diagram representing the evolution of the A* tree graph.  Each node connected to the start node 
represents one of the nine input commands from the input grid of Figure 5-1.  Nine edges then sprout from 
each of these nine nodes, connecting to all possible subsequent input commands.  The cost-to-come 
associated with each graph connection is listed. 
 

 This requirement necessitates the use of a tree graph, which at the addition of each 

node creates a branch that splits off from the rest of the graph and may only propagate by 

growing in length and dividing into additional branches.  These branches may only give rise 

to new nodes and may not rejoin any of the nodes which already exist on the graph.  Figure 

5-2 demonstrates pictorially the process of planning over a tree graph for the holonomic 

marine vehicle under consideration.  The colors of the nodes in this graph correspond to 

the grid entries of Figure 5-1.  From the start configuration, each of the nine possible input 

commands is considered, and the application of nine possible commands after the first 

command is considered next, causing the tree to expand rapidly into many diverging 

branches, each of which represents a unique combination of input commands.  This graph 

structure was adapted from a similar strategy used by Greytak for a nonholonomic marine 

vehicle [61].  Because many hundreds of command sequence possibilities can be generated 

2 C0 

2 C0 

2 C0 

2 C0 

C0 

C0 C0 

C0 

 2
1 C0 

start 



 95 

in planning over a relatively small space, the search must be informed by a carefully chosen 

cost-to-go function that aids in directing the evolution of the tree to the goal configuration. 

5.1.3 Cost-to-Go Heuristic 
 

To ensure that the A* algorithm converges quickly to the goal, an admissible heuristic must 

be employed which accurately approximates the cost required to reach the goal without 

over-estimating the true minimum cost of travel to the goal node from the node under 

consideration.  To achieve this, three simplifying assumptions are made.  First, all 

hydrodynamic drag forces are neglected.  It is assumed that the marine vehicle behaves as 

a double integrator in each degree of freedom.  Less input thrust is required to move a 

double integrator from one location to another than to move an equivalent mass with any 

amount of hydrodynamic drag, and so this assumption will aid in producing an 

underestimate.  The second simplifying assumption is that regardless of the vehicle pose at 

the node being evaluated, it is assumed that a thruster is pointing directly at the goal so 

that the double-thruster cost will never be applied in generating the cost-to-go.  The only 

input cost that will be used is the cost associated with running a single thruster.  The third 

assumption projects the vehicle velocity onto a vector connecting the vehicle’s current 

position and the goal, assuming that the vehicle has no velocity that is not aligned with the 

goal.  The only thrust required by the heuristic will be thrust directed at the goal.  The 

resulting procedure for computing the cost-to-go is given by (5.2): 

                                                    

m
F

d
m
FVV

tgoal
0

02
00 2

                                                                 (5.2) 

                                                   0*)( CTtfloorC plangoalgo   

This procedure directly computes the time required to reach the goal from the current 

vehicle position, tgoal.  This closed-form solution is possible because of the double integrator 

assumption.  V0 represents the net velocity in the direction of the goal, which is positive 

when the vehicle is moving toward the goal and negative when the vehicle is moving away 

from the goal.  The distance between the current position and the goal is d, and F0 



 96 

represents the fixed amount of thrust that may be applied by a single thruster.  The mass of 

the vehicle is m, Tplan is the fixed time interval over which each input command is applied, 

the “floor” function rounds its argument down to the nearest integer, and C0 is the baseline 

unit of cost introduced in Figure 5-1.  It has not been proven that this procedure yields a 

cost-to-go heuristic that is always admissible, but it has thus far yielded satisfactory 

planning results and fast algorithm convergence.  The only possibility left to chance by this 

heuristic is that it is sometimes the case that thrusting, followed by coasting, is truly the 

most cost-efficient behavior.  Since computing  the exact time to turn off the thrusters and 

begin coasting in the computation of Cgo is yet another optimization problem, the 

simplifying assumptions described above are used instead to offset any unanticipated 

possibility of getting to the goal at a lower cost by coasting.       

5.1.4 Robustness-Augmented Cost Function 
 

The final and most unique feature of this kinodynamic A* algorithm is the consideration of 

robustness against perturbations to the marine vehicle.  In addition to the cost-to-come and 

the cost-to-go, the cost function used in this analysis includes a term which evaluates the 

robustness of the path from the start node to the current node by applying the performance 

metric introduced in Chapter 4.    This new cost is concerned only with the specific path 

traveled so far, and so it is an additional cost-to-come.  The complete cost function is given 

by (5.3): 

                                                           comerobustgocometotal CCCC ,                                                      (5.3) 

                                                 )1(log*
max10, m

rAWC comerobust


  

The robustness component of the cost function consists of a tunable weight W multiplying 

the base ten logarithm of the difference between a perturbation matrix norm and an 

exponential performance metric obtained from the vehicle transition matrix.  The 

robustness parameters are obtained by designating the trajectory under consideration 

between the goal node and the current node to be the vehicle’s nominal trajectory.  A series 

of LKF and feedback control gains are computed for this nominal trajectory so that a closed 

loop transition matrix may be formulated for the system.  The perturbation matrix is 



 97 

computed according to (4.2) for a benchmark perturbation size selected for the entire 

duration of the algorithm.  The perturbation is applied to the vehicle in positive and 

negative x and y at each sampling instant of the trajectory, and the A matrix with the 

largest Euclidean norm over the entire nominal trajectory, over all perturbations 

considered, is selected for the robustness cost function.  A large perturbation size is 

selected so that A is always greater than the robustness performance metric and the 

argument of the logarithm in (5.3) is always positive.  The exponential parameters r and m, 

which were first introduced in Theorem 4.1, are obtained by bounding the marine vehicle’s 

transition matrix norm along the A*-formulated nominal trajectory with an exponential 

function.  In this procedure, the norm of (k,k0) from every instant k0 to every instant k 

along the entire nominal trajectory is no longer considered.  Instead r and m are obtained 

by fitting an exponential function to ||(k,k0)|| for a single k0 which corresponds to the 

start node.  Rather than (k,k0) producing a 3-D surface as was the case in Chapters 3 and 

4, it is now a simple 2-D curve that is considered, motivated primarily by a desire for 

computational efficiency.  Many hundreds of nominal trajectories might be evaluated over 

the course of the A* algorithm, and computing the norm of (k,k0) for every possible k and 

k0 is an expensive task.   

 The implication of considering only a single k0 is that, as per Theorem 3.2, a 

guarantee of uniform asymptotic stability is no longer sought, but merely asymptotic 

stability instead.  Theorem 4.1 can now only be applied to investigate stability for the 

specific k0 chosen, and not for all k0.  This is viewed as an acceptable compromise since the 

vehicle will presumably be initialized at the start node, and not at another location along 

the path computed by A*.   If the vehicle is initialized at the start node, then the cost 

function of (5.3) will be a valid predictor of robustness.     

A* Algorithm 
 

The ultimate goal of this A* algorithm is to achieve a planning procedure which guides the 

vehicle from the designated start waypoint to the designated goal waypoint, but does so in 

a manner which may divert from the most energy-efficient path in order to  gain 



 98 

robustness against perturbations.  As the unique features of the algorithm have each been 

presented in detail, the algorithm in its entirety is now given by Algorithm 5-1.  This 

algorithm is next applied to the raft vehicle model and used to examine the impact of the 

robustness weight W of (5.3) and the choice of start node and goal node on the resulting 

optimal path for a given set of features.  

 

_________________________________________________________________________________________________________ 

Algorithm 5-1: The Robustness-Augmented A* Algorithm 

1: Add the start node to the queue Q. 
2: while Q > 0 do 
3:  Choose the node n from Q with the lowest cost. 
4: for each of the nine input command choices u do 
5:  Propagate the system state at node n by applying u for time T. 
6:  Create a node n’ adjacent to n corresponding to the new system state. 
7:  Compute the cost-to-come, Ccome, by adding the cost of u to the Ccome of node n. 
8:  Compute the cost-to-go, Cgo, using (5.2). 
9:  Compute Crobust, come of the path from the start node to n’ using (5.3). 
10:  The total cost of n’ is Ctotal = Ccome + Cgo + Crobust, come.   
11: end for 
12: Add n to the list of dead nodes, D, and remove n from Q. 
13: for all nodes d in D do 
14:  if d is the goal then 
15:   Add d to the list of goal-reaching paths, G, and remove from D. 
16:  end if 
17: end for 
18: Find the node in G with the minimum cost, gmin. 
19: Find the node in Q with the minimum cost, qmin. 
20: if the cost of qmin is greater than the cost of gmin then 
21:  Q = 0, algorithm will terminate. 
22: else then 
23:  for all nodes q in Q do  
24:    if cost of q is greater than cost of gmin then 
25:    Remove q from Q and add to D.  
26:   end if 
27:  end for 
28: end if 
29: end while 

 
 



 99 

5.2 Performance of Robustness-Augmented A* 
 
A map of three collinear features is selected to test the augmented A* algorithm and to 

allow experimental implementation on the raft.  A similar set of features was used in the 

experiments of Chapter 4, although in the analysis and experiments of this chapter the 

spacing between features remains fixed at 0.1m and the vertical position of the features is 

varied.  Figure 5-3 displays the three-feature map, the start and goal waypoints, and the 

trajectories produced by A* with and without a robustness cost for three different 

separation distances between the features and the waypoints.  

 

 

 

 

 

 

 

 

 
Figure 5-3: Results from regular and robustness-augmented A* when the start and goal waypoints are 
separated by a horizontal distance of 0.7m.  Three cases with different vertical distances from the three-
feature baseline are considered.  A robustness weight of 100 is required to produce the curved trajectory for 
the 0.2m case, a weight of 200 is required to produce the curved trajectory for the 0.3m case, and no weight is 
capable of producing a curved trajectory in the 0.4m case.  The points plotted represent the location of the 
vehicle at each sampling instant along the A*-planned path.  The start and goal waypoints are plotted in black. 
 

In the absence of a robustness cost (achieved by setting the weight W from (5.2) to 

zero), A* yielded a horizontal straight-line trajectory between the two waypoints.  This 

makes intuitive sense as it achieves the shortest spatial distance between the two points 

and it can be achieved through the cheapest and most basic application of thrust.  In each 

case where W was set to zero the algorithm used two consecutive applications of the surge 

thruster to reach the goal.  By setting the robustness weight to larger values, a curved 

trajectory eventually emerged which departed from the energy-efficient path to stay in 

more robust locations relative to the features.  In all locations where the curved path 

emerged, it consisted of a simultaneous application of thrust in positive surge and negative 

W = 0 W = 0 W = 0 

W =100 W =200 

. . . . . . 



 100 

sway, followed by an application of positive thrust in sway, after which the vehicle refrains 

from using thrusters and coasts to the goal for the remainder of the trajectory.  Relative to 

the 0.2m vertical separation between the waypoints and the three-feature baseline, the 

0.3m separation required twice the weighting factor to force the vehicle away from the 

regular A* path, and no weight was found which could force the trajectory with 0.4m 

separation to curve its path.  These results suggest that as the three-feature baseline is 

moved closer to the designated waypoints, the regular A* trajectory becomes less and less 

robust. 

The three-feature horizontal baseline was selected because of the anticipated 

challenges of performing accurate estimation on the far left or right side of this map.  Due 

to the small differences in relative bearing between the vehicle each of the features, it was 

expected that a perturbation in this region could easily throw off the entire measurement 

Jacobian.  As numerical computation revealed, the measurement Jacobian is significantly 

more sensitive to perturbations along the horizontal straight-line trajectories than to 

perturbations along the robustness-optimal curved trajectories for the 0.2m and 0.3m 

separation distances.  The part of the trajectory with the greatest sensitivity, though, was 

the portion near the center of the three-feature baseline.  An examination of the 

perturbation norm ||A||max and of the robustness performance metric revealed that the 

greatest sensitivity is present in the perturbation norm, and it is contributed largely by the 

error H in the nominal measurement Jacobian when the vehicle is perturbed.  H 

represents the difference between the nominal measurement Jacobian used by the LKF for 

localization and a Jacobian linearized about the vehicle’s perturbed location.  This error in 

the measurement Jacobian is displayed graphically in Figure 5-4, which illustrates the size 

of H for perturbations of 0.1m in x and in y, respectively, for each of the A*-computed 

nominal trajectories that is plotted in Figure 5-3.  The size of the H matrix is represented 

by computing the Euclidean norm.  The location of each bar in Figure 5-4 corresponds 

approximately to the location of the respective point in x along the A*-computed nominal 

trajectory.  Table 5.1 provides a tabulated summary of the measurement Jacobian error and 

also the robustness performance parameters for all of the trajectories displayed in Figure 

5-3. 



 101 

                         

  
Figure 5-4: The Euclidean norm of the Jacobian error H induced by perturbations of positive and negative 
0.1m is plotted separately in x and in y for each of the five A*-computed trajectories displayed in Figure 5-3.  
The worst Jacobian errors occur along the horizontal straight-line trajectories that are close to the three-
feature baseline. 
 

0.2m Spacing, W=0 

0.3m Spacing, W=0 

0.3m Spacing, W=200 

0.4m Spacing, W=0 

0.2m Spacing, W=100 

0.2m Spacing, W=0 

0.3m Spacing, W=0 

0.3m Spacing, W=200 

0.4m Spacing, W=0 

0.2m Spacing, W=100 



 102 

 
Table 5.1: Robustness Parameters for the A* Trajectories of Figure 5-3 

Spacing Weight Crobust, come A||max 
m

r)1(   
Mean 
H||  
In X 

Mean 
H||  
in Y 

Maximum 
H||  
in X 

Maximum 
H||  
in Y 

0.2m 0 120 4.05 0.0319 2.04 2.38 2.92 5.02 
0.2m 100 50 1.81 0.0315 0.96 1.00 1.53 1.59 
0.3m 0 47 1.74 0.0320 1.20 1.29 1.56 2.19 
0.3m 200 1 1.04 0.0309 0.66 0.68 1.01 1.06 
0.4m 0 0 0.94 0.0321 0.79 0.83 0.95 1.24 
Note: All robustness costs, Crobust, come, are computed according to (5.3) using a weight 
W=200 to allow fair comparison among the results. 
______________________________________________________________________________ 
 

Both Figure 5-4 and Table 5.1 demonstrate that the measurement Jacobian is 

especially sensitive to perturbations from the 0.2m horizontal straight-line trajectory 

which was computed with a robustness weight W of zero.  It was second-most sensitive to 

perturbations from the horizontal trajectory spaced 0.3m from the baseline.  Both 

robustness-augmented curved trajectories yield significant improvements in the sensitivity 

of the measurement Jacobian, and also the overall robustness cost assigned to the 

trajectory.  In particular, for the 0.3m spacing case the robustness-augmented trajectory 

accumulates a robustness cost-to-come of 1, while the regular A* trajectory accumulates a 

robustness cost of 47.  From table 5.1 it can be observed that the changes in nominal 

trajectory had almost no effect on the robustness performance metric computed from 

exponential parameters m and r, which is nearly the same for all trajectories.  All of the 

sensitivity to perturbations was exhibited in the perturbation norm A||max, and in 

particular can be traced to the measurement Jacobian.   

It must be noted that the trajectories found using the robustness-augmented A* 

algorithm may not truly represent the most robust trajectories in the entire state space, but 

they are optimal given the constraints of discrete time and the discrete input space.  It can 

be noticed in Figure 5-3 that none of the A*-planned trajectories precisely reach the goal 

waypoint, and this is because any trajectory that arrives within 0.05m of the goal in both x 

and y is declared to have reached the goal.  This is one of several discretization choices 

which must be made to implement this algorithm efficiently, and these parameters, in 

addition to the Kalman filter tuning parameters needed for the robustness evaluation and 



 103 

the various cost and weighting parameter choices for the raft vehicle model, are 

summarized in Table 5.2.        

Table 5.2: Parameters Used in Robustness-Augmented A* Simulation and Experiment 

Discretization 
Parameters: 

Sampling Time 
Interval:  0.5 sec 

Force Application 
Time Interval: 1 sec 

Magnitude of Force 
Application: 0.2 N  

Cost and Weighting 
Parameters: 

Base Unit of Cost C0 (as 
defined in Fig. 5-1): 10 

Benchmark Perturbation size 
used for A: 0.1m 

Margin of Error for 
Arrivals at the Goal: 

Margin of error in x:  
0.05 m 

Margin of error in y:  
0.05 m 

Vehicle Process 
Noise Parameters: 

Process noise 
variance, surge:  
0.1 (m/s2)2 

Process noise 
variance, sway:  
0.1 (m/s2)2 

Process noise 
variance, roll:  
0.1 (rad/s2)2 

Feature Detection 
Noise Parameters: 

Sensor noise variance, vehicle-
relative range: 10-4 (m)2 

Sensor noise variance, vehicle-
relative bearing: 10-4 (rad)2 

______________________________________________________________________________ 

5.3 Experimental Results 
 
The A* trajectories displayed in Figure 5-3 were adapted for experimental implementation 

on the raft platform.  Although A* planned these trajectories to consume minimum time 

and energy, they must be interpolated and made less aggressive for successful use in 

experiment.  Because the raft frequently encounters disturbances in its testing tank and 

bias forces from its tethered power cable, it is unlikely that an application of the precise 

forces used in Figure 5-3 will reach the goal in the amount of time dictated by the A* 

simulation.  In addition, it is not only desired that the vehicle reach the goal a single time, 

but that the vehicle execute a periodic path between the start waypoint and goal waypoint 

used by A*.  A periodic trajectory that endures for several cycles will provide stronger 

evidence as to whether robustness-augmented A* has planned trajectories which achieve 

significant gains in robustness.  And so, the shape of the trajectories planned by A* is 

preserved, but the period of time and sequence of inputs over which they occur is adjusted.  

Because the main contributors to instability in this holonomic vehicle navigation problem 

are perturbation-sensitive spatial configurations, the basic spatial layout of the A* 

trajectory is the main product sought from the planning algorithm.  



 104 

 The first series of raft experiments interpolated the trajectories of Figure 5-3 to fit a 

time interval of 20 seconds for travel between the two waypoints.  This interpolated 

trajectory was then used as the nominal trajectory for a linearized Kalman filter, using the 

same tuning parameters listed in Table 5.2.  Rather than interpolate the sequence of force 

inputs, the nominal input was set to zero for the entire trajectory and the feedback 

controller was relied upon to propagate the vehicle from waypoint to waypoint along the 

interpolated A* trajectory.  First, the trajectories with zero robustness cost were explored 

to identify any instabilities that may result from vulnerability to perturbations.  Figure 5-5 

displays the experimental data gathered for the standard horizontally-directed A* 

trajectory with vertical spacings of 0.2m, 0.3m, and 0.4m from the three-feature baseline.  

The 0.3m and 0.4m cases were successfully implemented using an LKF and were robust to 

errors in initialization (i.e., they didn’t have to be initialized from the exact start waypoint).  

The 0.2m case, on the other hand, consistently exhibited the onset of instability only a few 

seconds after initialization.   

 The curved trajectory computed by robustness-augmented A* was attempted next 

using an LKF, and this trajectory, for both the 0.2m and 0.3m case, exhibited instability.  

This curved trajectory was difficult for the vehicle to adhere to closely because of the tether 

forces exerted on the raft.  It is believed that the raft was not capable of adhering closely 

enough to the nominal trajectory for the LKF algorithm to succeed.  The unstable results for 

the 0.3m and 0.4m case are displayed in Figure 5-6. 

 Because of the failure encountered in implementing the robustness-augmented A* 

trajectories using an LKF, an EKF was implemented next, and the failed trajectories were 

interpolated further to allow 25 seconds of transit time between the start and goal 

waypoints.  It is reasonable to expect an LKF algorithm to fail if the vehicle is perturbed or 

displaced significantly from its nominal trajectory, but an EKF algorithm is linearized 

locally about the current state estimate and should not fail along a robust nominal 

trajectory.  First, the EKF was applied to the simple horizontal trajectory with a vertical 

spacing of 0.2m, which had exhibited failure using an LKF in Figure 5-5.  Although the 0.2m 

trajectory occasionally succeeded, it also encountered instability in numerous trials.  Figure 

5-7  displays   three   representative   cases   of  the  0.2m  horizontal  trajectory,  one  which  



 105 

 

 

 
Figure 5-5: Two complete cycles are plotted of a periodic trajectory between two waypoints adapted from the 
standard A* algorithm (in the case of instability fewer cycles are plotted).  The same horizontal trajectory is 
attempted in each case, with vertical spacing between the trajectory and the features varying from 0.2m to 0.4m.  
Using an LKF, the 0.3m and 0.4m cases are stable and the 0.2m case is unstable.  Estimation error in x and in y is 
plotted, alongside the error in vehicle position from the nominal trajectory.  
 
succeeded and two which encountered instability.  Even with an EKF, this trajectory was 

particularly sensitive to the location from which it was initialized.  When far enough away 

from the exact starting waypoint (0.1m to 0.2m seemed to be sufficient),  this trajectory led  



 106 

 

 
Figure 5-6: The onset of instability is plotted for a periodic trajectory between two waypoints adapted from the 
robustness-augmented A* algorithm.  The same trajectory is attempted in each case, with vertical spacing between 
the trajectory and the features varying from 0.2m to 0.3m.  Using an LKF, both the 0.2m and 0.3m cases were found 
to be unstable.  Estimation error in x and in y is plotted, alongside the error in vehicle position from the nominal 
trajectory.  
 

to instability. 

 Fortunately, when the EKF was applied to the two curved trajectories obtained from 

robustness-augmented A*, the closed-loop system remained stable.  Results for both 0.2m 

and 0.3m spacing from the three-feature baseline are displayed in Figure 5-8.  Although the 

raft does not adhere precisely to the nominal trajectory, the vehicle travels successfully 

between the two waypoints and there is little if any estimation error.  Errors on the order 

of one or two tenths of a meter did not lead to sporadic instability as they did for the 0.2m 

horizontal trajectory.  This indicates that in the case of 0.2m spacing from the three-feature 

baseline, the robustness-augmented A* algorithm succeeded in choosing a more robust 

trajectory than the standard A* algorithm.  Although the robustness-augmented A* 

algorithm  also  recommended a curved trajectory for spacing of 0.3m from the baseline, no  



 107 

 

 

 
 
Figure 5-7: A periodic horizontal trajectory between two waypoints adapted from the standard A* algorithm is 
plotted for a vertical spacing of 0.2m from the three-feature baseline.  The three sets of plots represent three typical 
time responses encountered, which included the frequent onset of instability.  EKF Estimation error in x and in y is 
plotted, alongside the error in vehicle position from the nominal trajectory.  
 

tangible gain in robustness was made apparent by this experiment.  And, as predicted  by  

the A* results of Figure 5-3, for a spacing of 0.4m from the baseline the simple horizontal 

trajectory was sufficiently robust without the addition of any curvature.  For this particular 

series  of  experiments  a  robustness  weight  of  100  would  have  been sufficient to ensure  



 108 

 
 

 
Figure 5-8: Two complete cycles are plotted of a periodic trajectory between two waypoints adapted from the 
robustness-augmented A* algorithm.  The same curved trajectory is attempted in each case, with vertical spacing 
between the trajectory and the features varying from 0.2m to 0.3m.  Using an EKF, both the 0.2m and 0.3m cases 
are found to be stable.  Estimation error in x and in y is plotted, alongside the error in vehicle position from the 
nominal trajectory.  
 
closed-loop vehicle stability, since this value of the robustness weight W only 

recommended a curved trajectory for the 0.2m case.  For the raft vehicle platform, these 

experiments served as a tuning procedure which aided the selection of appropriate costs 

and weights for the robustness-augmented A* algorithm. 

 This method has demonstrated that only after a thorough search of an autonomous 

vehicle’s state space can it be concluded that the vehicle is safe from the pitfalls of 

perturbation-sensitive configurations.  A simple map of three collinear features was used to 

simply experimental implementation, but this technique can be extended to path-planning 

for any system that is capable of achieving asymptotic stability in the absence of 

perturbations and whose dynamics can be expressed within a linear time-varying state 

space framework.  For an autonomous ship hull survey, where perturbations are more than 



 109 

likely to occur, tempering a search for an energy and time-efficient path with a robustness 

cost will help the survey vehicle avoid instabilities such as those encountered by the raft in 

Figure 5-7.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 110 

 
 
 

 
Chapter 6 
 

Conclusion 
 
This thesis has introduced a series of algorithms designed to evaluate the stability and 

robustness of a holonomic marine vehicle carrying out an integrated localization, 

mapping, and control process using an a priori map.  Despite the specific nature of the 

application, the algorithms are applicable to any autonomous vehicle control and 

estimation scenario whose closed-loop dynamics may be expressed within the 

framework of a linear time-varying state space model. 

6.1 Summary 
 
In Chapter 2, the real-time map building capabilities of a holonomic marine vehicle are 

demonstrated as a preliminary step toward autonomous ship hull inspection.  An EKF is 

used to localize the HAUV and construct a map of mine-shaped training targets which are 

extracted from DIDSON sonar imagery.  The successful performance of this task in real-

time at a reasonable bandwidth demonstrates the potential of feature-based navigation 

methods for successful assimilation with high-fidelity feedback control. 

In Chapter 3 a model is introduced which integrates a map refinement estimation 

process with feedback control to achieve a linear time-varying closed-loop system which is 

linearized about a nominal vehicle survey trajectory.  The stability of the vehicle is 

investigated by computing the norm of the state transition matrix, (k,k0).  Analysis of 

||(k,k0)|| reveals that map refinement (i.e., localization and mapping) can achieve 

Lyapunov stability at best, while map exploitation, which is strictly localization, can achieve 

asymptotic stability.  It is then shown that (k,k0) can be used as a necessary and sufficient 



 111 

indicator of stability in inspecting the vehicle’s controller.  An examination of the 

approximate upward gain margin demonstrated comparable sensitivity among a map 

exploitation, map refinement, and direct x-y- position measurement process. 

In Chapter 4 we consider errors in the linear time-varying closed-loop vehicle model 

that are introduced by perturbations from the nominal trajectory.  A performance metric is 

derived from a well-established sufficiency condition for asymptotic stability in the 

presence of perturbations.  This metric enables the evaluation of the relative robustness  

among different system configurations.  The performance metric allows us to discern the 

impact of subtle aspects of filter conditioning, such as the geometric configuration of map 

features, on the robustness of the marine vehicle.  The use of this technique yields a 

procedure for evaluating which of several candidate trajectories is best-equipped to 

tolerate perturbations, and it is applicable to complex estimation scenarios which may 

involve multiple sensors and map features which drop in and out of view. 

Finally, selection of a sufficiently robust path from among all goal-reaching paths in 

the vehicle state space is achieved using the A* graph search algorithm in Chapter 5.  

Considering the robustness performance metric in the A* cost function causes the planning 

algorithm to divert from the most energy-efficient trajectory if there is a significant gain to 

be made in robustness against perturbations to the vehicle.  An algorithm of this nature can 

aid the design of vehicle survey trajectories by enforcing careful maneuvering around 

sensitive areas of the map and by softening the impact of perturbation-induced 

linearization errors. 

Although the framework for analyzing stability and robustness has used the LKF to 

allow advance computation along a nominal vehicle survey trajectory, it is recommended 

that an EKF be used for experimental implementation of vehicle surveys.  The LKF 

framework is intended to serve as a tool to inform design, and upon designing a trajectory 

that is optimally suited for robustness against perturbations using an LKF, experimental 

implementation with an EKF may provide an additional safeguard against instability due to 

displacement from the nominal survey trajectory.  



 112 

6.2 Future Work 
 
Several of the topics explored in this thesis warrant future investigation.  One important 

remaining task is to apply the robustness methods of Chapters 4 and 5 to systems which 

cannot achieve asymptotic stability, and achieve Lyapunov stability at best.  It has not yet 

been proven that the most robust trajectory for map exploitation, which can be selected 

using the robustness performance metric of Chapter 4, is also the most robust trajectory 

for map refinement.   

In addition, a method of robustness evaluation which can determine the system 

configuration best-equipped against perturbations without being informed of a specific 

perturbation size is highly desirable.  It seems intuitive that the most robust trajectory 

should be robust irrespective of the size of the perturbation, and a result of this nature 

would greatly simplify the implementation of the robustness evaluation algorithms 

presented in Chapters 4 and 5.  An achievement of this nature would also simplify the task 

of making robustness comparisons between different systems.   

With respect to the problem of planning a robust path between two waypoints, 

there are many desirable additions to the A* cost function.  For the application of ship hull 

inspection, achieving one hundred percent coverage of the survey area is a critical 

objective, and these coverage requirements must be combined with the goal-reaching and 

robustness costs.  The information gained by achieving wide coverage can also be 

tempered by a cost assigned to estimation uncertainty, which will ensure that the 

autonomous vehicle acts to reduce its estimation error variance whenever possible.  The 

relationship between error variance reduction and robustness optimization must be 

explored and understood, and any overlap among the two motion planning objectives must 

be identified. 

From a broader perspective, the ability to analyze the interaction of a feedback 

control process with a large-scale localization and mapping process is also a desirable 

objective.  At the current time estimation algorithms which do not use an a priori map, but 

instead build a map from scratch, cannot be incorporated into the linear system stability 

analysis presented here.  In addition, the Kalman filter framework grows computationally 

infeasible as maps accumulate hundreds of features, and so an estimation framework is 



 113 

sought which can accommodate localization and mapping on a large scale and still permit 

an analysis of the interaction between the estimation and control processes and 

identification of the associated stability margins. 

Despite the need for continued investigation, this study is a first step toward 

understanding the interaction between feedback control and feature-based estimation and 

managing the robustness of the integrated process.  If feature-based estimation algorithms 

are to be used successfully in the closed-loop surveying of marine environments, an 

understanding of how stability and robustness may be achieved and managed is of 

paramount importance. 



 114 

 

Bibliography 
 
[1] F. Hover, J. Vaganay, M. Elkins, S. Wilcox, V. Polidoro, J. Morash, R. Damus, and S. 

Desset, “A Vehicle System for Autonomous Relative Survey of In-Water Ships,” 
Marine Technology Society Journal, vol. 41(2), 2007, pp. 44-55. 

 
[2] J. Vaganay, M. Elkins, S. Wilcox, F. Hover, R. Damus, S. Desset, J. Morash, and V. 

Polidoro, “Ship Hull Inspection By Hull-Relative Navigation and Control,” Proc. IEEE 
OCEANS Conf., Washington, D.C., 2005, pp. 761-766. 

 
[3] J. Vaganay, M. Elkins, D. Esposito, W. O’Halloran, F. Hover, and M. Kokko, “Ship Hull 

Inspection with the HAUV: US Navy and NATO Demonstrations Results,” Proc. IEEE 
OCEANS Conf., Boston, 2006, pp. 1-6. 

 
[4] E. Belcher, H. Dinh, D. Lynn, and T. Laughlin, “Beamforming and Imaging with 

Acoustic Lenses in Small, High Frequency Sonars,” Proc. IEEE OCEANS Conf., Seattle, 
1999, pp. 1495-1499. 

 
[5] E. Belcher, B. Matsuyama, and G. Trimble, “Object Identification with Acoustic 

Lenses,” Proc. IEEE OCEANS Conf., Honolulu, 2001, pp. 6-11. 
 
[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, MA: The MIT 

Press, 2005. 
 
[7] S. LaValle, Planning Algorithms, Cambridge, UK: Cambridge University Press, 2006. 
 
[8] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun, 

Principles of Robot Motion, Cambridge, MA: The MIT Press, 2005. 
 
[9] A. Gelb, ed., Applied Optimal Estimation, Cambridge, MA: The MIT Press, 1984. 
 
[10] R.C. Smith and P. Cheeseman, “On the representation and estimation of spatial 

uncertainty,” Int. J. Robotics Research, vol. 5(4), 1986, pp. 56-68. 
 
[11] J. Leonard and H.F. Durrant-Whyte, “Mobile Robot Localization by Tracking    

Geometric Beacons,” IEEE Trans. on Robotics and Automation, vol. 7(3), 1991, pp. 
376-382. 

 
[12] F. Lu and E. Milios, “Robot Pose Estimation in Unknown Environments by Matching 

2D Range Scans,” Proc. IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Seattle, 1994, pp. 935-938. 

 



 115 

[13] P. Besl and N. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans on 
Pattern Analysis and Machine Intelligence, 14(2), 1992, pp. 239-256. 

 
[14] R. Madhavan, G. Dissanayake, and H. Durrant-Whyte, “Map-Building and Map-Based 

Localization in an Underground Mine by Statistical Pattern Matching,” Proc. IEEE Int. 
Conf. on Pattern Recognition, Brisbane, 1998, pp. 1744-1746. 

 
[15] R. Madhavan and H. Durrant-Whyte, “2D Map-Building and Localization in Outdoor 

Environments,” Journal of Robotic Systems, vol. 22(1), 2005, pp. 45-63. 
 
[16] C. Roman and H. Singh, “Improved Vehicle-Based Multibeam Bathymetry Using Sub-

Maps and SLAM,” Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Edmonton, 
2005, pp. 3662-3669. 

 
[17] B. Schiele and J. Crowley, “Comparison of Position Estimation Techniques Using 

Occupancy Grids,” Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, 1994, 
pp. 1628-1634. 

 
[18] R. Simmons and S. Koenig, “Probabilistic Robot Navigation in Partially Observable 

Environments,” Proc. Int. Joint Conf. on Artificial Intelligence, Montreal, 1995, pp. 
1080-1087. 

 
[19] A. Cassandra, L. Kaelbling, and J. Kurien, “Acting Under Uncertainty: Discrete 

Bayesian Models for Mobile-Robot Navigation,” Proc. IEEE Int. Conf. on Intelligent 
Robots and Systems, Osaka, 1996, pp. 963-972. 

 
[20] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo Localization for Mobile 

Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, 1999, pp. 1322-
1328.  

 
[21] R. Smith, M. Self, and P. Cheeseman, “Estimating Uncertain Spatial Relationships in 

Robotics,” I. Cox and G. Wilfon, eds., Autonomous Robot Vehicles, New York: Springer-
Verlag, 1990, pp. 167-193. 

 
[22] M. Csorba, Simultaneous Localisation and Map Building, PhD Thesis, University of 

Oxford, 1997. 
 
[23] G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, “A Solution 

to the Simultaneous Localization and Map Building (SLAM) Problem,” IEEE Trans. on 
Robotics and Automation, vol. 17(3), 2001, pp. 229-241. 

 
[24] J. Leonard and H. Feder, “A Computationally Efficient Method for Large-Scale 

Concurrent Mapping and Localization,” Proc. Ninth Int. Symposium On Robotics 
Research, Salt Lake City, 1999, pp. 169-176. 

 



 116 

[25] F. Lu and E. Milios, “Globally Consistent Range Scan Alignment for Environment 
Mapping,” Autonomous Robots, vol. 4(4), 1997, pp. 333-349. 

 
[26] J. Folkesson and H. Christensen, “Graphical SLAM – A Self-Correcting Map,” Proc. 

IEEE Int. Conf. on Robotics and Automation, New Orleans, 2004, pp. 383-390. 
 
[27] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durant-Whyte, “Simultaneous 

Localization and Mapping with Sparse Extended Information Filters,” Int. J. Robotics 
Research, Vol. 23(7-8), 2004, pp. 693-716. 

 
[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A Factored Solution 

to the Simultaneous Localization and Mapping Problem,” Proc. AAIA Nat. Conf. on 
Artificial Intelligence, Edmonton, 2002, pp. 593-598. 

 
[29] H. Choset, ”Coverage for Robotics – A Survey of Recent Results,” Annals of 

Mathematics and Artificial Intelligence, Vol. 31, 2001, pp. 113-126. 
 
[30] H. Feder, J. Leonard, and C. Smith, ”Adaptive Mobile Robot Navigation and Mapping,” 

Int. J. Robotics Research, vol. 18(7), 1999, pp. 650-668. 
 
[31] S. Huang, N. Kwok, G. Dissanayake, Q. Ha, and G. Fang, “Multi-Step Look-Ahead 

Trajectory Planning in SLAM: Possibility and Necessity,” Proc. IEEE Int. Conf. on 
Robotics and Automation, Barcelona, 2005, pp. 1091-1096. 

 
[32] A. Makarenko, S. Williams, F. Bourgoult, and H. Durrant-Whyte, “An Experiment in 

Integrated Exploration,” Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 
Lausanne, Switzerland, 2002, pp.534-539. 

 
[33] P. Newman, M. Bosse, and J. Leonard, “Autonomous Feature-Based Exploration,” 

Proc. IEEE Int. Conf. on Robotics and Automation, Taipei, 2003, pp. 1234-1240.  
 
[34] T. Kollar and N. Roy, “Trajectory Optimization Using Reinforcement Learning for 

Map Exploration,” Int. J. Robotics Research, vol. 27(2), 2008, pp. 175-196. 
 
[35] T. Vidal-Calleja, J. Andrade-Cetto, and A. Sanfeliu, “Estimator Stability Analysis in 

SLAM,” Proc. 5th IFAC/EURON Symp. on Intelligent Autonomous Vehicles, Lisbon, July 
2004.  

 
[36] J. Andrade-Cetto and A. Sanfeliu, “The Effects of Partial Observability in SLAM,” Proc. 

IEEE Int. Conf. on Robotics and Automation, New Orleans, 2004, pp. 397-402.  
 
[37] F. Hover, “Stability of Double-Integrator Plants Controlled using Real-Time SLAM 

Maps,” Proc. IEEE Int. Conf. on Robotics and Automation., Pasadena, 2008, pp. 637-
642. 

 
 



 117 

[38] P. Corke, “Mobile Robot Navigation as a Planar Visual Servoing Problem,” R. Jarvis 
and A. Zelinsky, eds., Robotics Research: The Tenth International Symposium, 
Heidelberg: Springer-Verlag, 2003, pp. 361-371. 

 
[39] E. Malis, “Stability Analysis of Invariant Visual Servoing and Robutness to 

Parametric Uncertainties,” A. Bicchi, H. Christensen, and D. Prattichizzo, eds., Control 
Problems in Robotics, Heidelberg: Springer-Verlag, 2003, pp. 265-280. 

 
[40] F. Chaumette, “Potential Problems of Stability and Convergence in Image-Based and 

Position-Based Visual Servoing,” D. Kriegman, G. Hager, and A Morse, eds., The 
Confluence of Vision and Control, Heidelberg: Springer-Verlag, 1998, pp. 66-78. 

 
[41] L. Deng, F. Janabi-Sharafi, W. Wilson, “Stability and Robustness of Visual Servoing 

Methods,” Proc. IEEE Int. Conf. on Robotics and Automation, Washington, D.C., 2002, 
pp. 1604-1609. 

 
[42] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische 

Mathematik, vol. 1(1), 1959, pp. 269-271. 
 
[43] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination 

of Minimum Cost Paths,” IEEE Trans. On Systems Science and Cybernetics, vol. 4(2), 
1968, pp. 100-107. 

 
[44] R. Dechter and J. Pearl, “Generalized Best-First Search Strategies and the Optimality 

of A*”, J. Assoc. Comput. Mach., vol. 32(3), 1985, pp. 505-536. 
 
[45] J. Canny, J. Reif, B. Donald, and P. Xavier, “On the Complexity of Kinodynamic 

Planning,” 29th Annual Symp. On Foundations of Computer Science, White Plains, NY, 
1988, pp. 306-316. 

 
[46] E. Frazzoli, “Maneuver-Based Motion Planning and Coordination for Single and 

Multiple UAVs,” AIAA 1st Technical Conf. and Workshop on Unmanned Aerospace 
Vehicles, Portsmouth, VA, 2002. 

 
[47] S. Williams, H. Durrant-Whyte, and G. Dissanayake, “Constrained Initialization of the 

Simultaneous Localization and Mapping Algorithm,” Int. J. Robotics Research, vol. 
22(7-8), 2003, pp. 541-564.  

 
[48] M. Kokko, Range-Based Navigation of AUVs Operating Near Ship Hulls, M.S. Thesis, 

Massachusetts Institute of Technology, 2007. 
 
[49] A. Bryson, Applied Optimal Control: Optimization, Estimation, and Control, 

Washington: Hemisphere Pub. Corp., 1975. 
 
[50] F. Lewis and V. Syrmos, Optimal Control, New York: John Wiley and Sons, 1995. 
 



 118 

[51] A. Bryson, Applied Linear Optimal Control: Examples and Algorithms, Cambridge, UK: 
Cambridge University Press, 2002. 

 
[52] M. Athans, “The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem 

in Control System Design,” IEEE Trans. On Automatic Control, vol. AC-16(6), 1971, 
pp. 529-552. 

 
[53] J.J. Slotine, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice Hall, 1991. 
 
[54] J.C. Willems, Stability Theory of Dynamical Systems, London: Thomas Nelson and 

Sons ltd., 1970. 
 
[55] A. Ilchmann, D.H. Owens, and D. Prätzel-Wolters, “Sufficient conditions for stability 

of linear time-varying systems,” Systems and Control Letters, vol. 9, 1987, pp. 157-
163. 

 
[56] F. Amato, G. Celentano, F. Garofalo, “New sufficient conditions for the stability of 

slowly varying linear systems,” IEEE Trans. Automatic Control, vol. 38(9), 1993, pp. 
1409-1411. 

 
[57] P. Mullhaupt, D. Buccieri, and D. Bonvin, “A numerical sufficiency test for the 

asymptotic stability of linear time-varying systems,” Automatica, vol. 43(4), 2007, 
pp. 631-638. 

 
[58] B. Chen and T. Dong, “Robust stability analysis of Kalman-Bucy Filter under 

parametric and noise uncertainties”, Int. J. Control, 48, 1988, pp. 2189-2199. 
 
[59] A. Weinmann, Uncertain Models and Robust Control, New York: Springer-

Verlag/Wien, 1991. 
 
[60] G. Chen, ed., Approximate Kalman Filtering, Singapore: World Scientific, 1993. 
 
[61] M. Greytak, Autonomous Learning and Control for Marine Vehicles, PhD Thesis, 

Massachusetts Institute of Technology, 2009. 


